當前位置: 首頁>>代碼示例>>Python>>正文


Python torch.chunk方法代碼示例

本文整理匯總了Python中torch.chunk方法的典型用法代碼示例。如果您正苦於以下問題:Python torch.chunk方法的具體用法?Python torch.chunk怎麽用?Python torch.chunk使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在torch的用法示例。


在下文中一共展示了torch.chunk方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: forward

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import chunk [as 別名]
def forward(self, x, query_input=None):
        """x: [bs, num cols, d_model].  Output has the same shape."""
        assert x.dim() == 3, x.size()
        bs, ncols, _ = x.size()

        # [bs, num cols, d_state * 3 * num_heads]
        qkv = self.qkv_linear(x)
        # [bs, num heads, num cols, d_state] each
        qs, ks, vs = map(self._split_heads, torch.chunk(qkv, 3, dim=-1))

        if query_input is not None:
            # TODO: obviously can avoid redundant calc.
            qkv = self.qkv_linear(query_input)
            qs, _, _ = map(self._split_heads, torch.chunk(qkv, 3, dim=-1))

        # [bs, num heads, num cols, d_state]
        x = self._do_attention(qs, ks, vs, mask=self.attn_mask.to(x.device))

        # [bs, num cols, num heads, d_state]
        x = x.transpose(1, 2)
        # Concat all heads' outputs: [bs, num cols, num heads * d_state]
        x = x.contiguous().view(bs, ncols, -1)
        # Then do a transform: [bs, num cols, d_model].
        x = self.linear(x)
        return x 
開發者ID:naru-project,項目名稱:naru,代碼行數:27,代碼來源:transformer.py

示例2: forward

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import chunk [as 別名]
def forward(self,h,emb):
        sbatch,nsq,lchunk=h.size()
        h=h.contiguous()
        """
        # Slower version
        ws=list(self.adapt_w(emb).view(sbatch,self.ncha,1,self.kw))
        bs=list(self.adapt_b(emb))
        hs=list(torch.chunk(h,sbatch,dim=0))
        out=[]
        for hi,wi,bi in zip(hs,ws,bs):
            out.append(torch.nn.functional.conv1d(hi,wi,bias=bi,padding=self.kw//2,groups=nsq))
        h=torch.cat(out,dim=0)
        """
        # Faster version fully using group convolution
        w=self.adapt_w(emb).view(-1,1,self.kw)
        b=self.adapt_b(emb).view(-1)
        h=torch.nn.functional.conv1d(h.view(1,-1,lchunk),w,bias=b,padding=self.kw//2,groups=sbatch*nsq).view(sbatch,self.ncha,lchunk)
        #"""
        h=self.net.forward(h)
        s,m=torch.chunk(h,2,dim=1)
        s=torch.sigmoid(s+2)+1e-7
        return s,m

########################################################################################################################
######################################################################################################################## 
開發者ID:joansj,項目名稱:blow,代碼行數:27,代碼來源:blow.py

示例3: __init__

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import chunk [as 別名]
def __init__(self, dir, transform=None):
        self.dir = dir
        box_data = torch.from_numpy(loadmat(self.dir+'/box_data.mat')['boxes']).float()
        op_data = torch.from_numpy(loadmat(self.dir+'/op_data.mat')['ops']).int()
        sym_data = torch.from_numpy(loadmat(self.dir+'/sym_data.mat')['syms']).float()
        #weight_list = torch.from_numpy(loadmat(self.dir+'/weights.mat')['weights']).float()
        num_examples = op_data.size()[1]
        box_data = torch.chunk(box_data, num_examples, 1)
        op_data = torch.chunk(op_data, num_examples, 1)
        sym_data = torch.chunk(sym_data, num_examples, 1)
        #weight_list = torch.chunk(weight_list, num_examples, 1)
        self.transform = transform
        self.trees = []
        for i in range(len(op_data)) :
            boxes = torch.t(box_data[i])
            ops = torch.t(op_data[i])
            syms = torch.t(sym_data[i])
            tree = Tree(boxes, ops, syms)
            self.trees.append(tree) 
開發者ID:kevin-kaixu,項目名稱:grass_pytorch,代碼行數:21,代碼來源:grassdata.py

示例4: __init__

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import chunk [as 別名]
def __init__(self, dir, transform=None):
        self.dir = dir
        box_data = torch.from_numpy(loadmat(self.dir+u'/box_data.mat')[u'boxes']).float()
        op_data = torch.from_numpy(loadmat(self.dir+u'/op_data.mat')[u'ops']).int()
        sym_data = torch.from_numpy(loadmat(self.dir+u'/sym_data.mat')[u'syms']).float()
        #weight_list = torch.from_numpy(loadmat(self.dir+'/weights.mat')['weights']).float()
        num_examples = op_data.size()[1]
        box_data = torch.chunk(box_data, num_examples, 1)
        op_data = torch.chunk(op_data, num_examples, 1)
        sym_data = torch.chunk(sym_data, num_examples, 1)
        #weight_list = torch.chunk(weight_list, num_examples, 1)
        self.transform = transform
        self.trees = []
        for i in xrange(len(op_data)) :
            boxes = torch.t(box_data[i])
            ops = torch.t(op_data[i])
            syms = torch.t(sym_data[i])
            tree = Tree(boxes, ops, syms)
            self.trees.append(tree) 
開發者ID:kevin-kaixu,項目名稱:grass_pytorch,代碼行數:21,代碼來源:grassdata.py

示例5: pack_sequence_for_linear

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import chunk [as 別名]
def pack_sequence_for_linear(inputs, lengths, batch_first=True):
    """
    :param inputs: [B, T, D] if batch_first 
    :param lengths:  [B]
    :param batch_first:  
    :return: 
    """
    batch_list = []
    if batch_first:
        for i, l in enumerate(lengths):
            # print(inputs[i, :l].size())
            batch_list.append(inputs[i, :l])
        packed_sequence = torch.cat(batch_list, 0)
        # if chuck:
        #     return list(torch.chunk(packed_sequence, chuck, dim=0))
        # else:
        return packed_sequence
    else:
        raise NotImplemented() 
開發者ID:ramakanth-pasunuru,項目名稱:video_captioning_rl,代碼行數:21,代碼來源:esim.py

示例6: seq2seq_cross_entropy

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import chunk [as 別名]
def seq2seq_cross_entropy(logits, label, l, chuck=None, sos_truncate=True):
    """
    :param logits: [exB, V] : exB = sum(l)
    :param label: [B] : a batch of Label
    :param l: [B] : a batch of LongTensor indicating the lengths of each inputs
    :param chuck: Number of chuck to process
    :return: A loss value
    """
    packed_label = pack_sequence_for_linear(label, l)
    cross_entropy_loss = functools.partial(F.cross_entropy, size_average=False)
    total = sum(l)

    assert total == logits.size(0) or packed_label.size(0) == logits.size(0),\
        "logits length mismatch with label length."

    if chuck:
        logits_losses = 0
        for x, y in zip(torch.chunk(logits, chuck, dim=0), torch.chunk(packed_label, chuck, dim=0)):
            logits_losses += cross_entropy_loss(x, y)
        return logits_losses * (1 / total)
    else:
        return cross_entropy_loss(logits, packed_label) * (1 / total) 
開發者ID:ramakanth-pasunuru,項目名稱:video_captioning_rl,代碼行數:24,代碼來源:esim.py

示例7: forward

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import chunk [as 別名]
def forward(self, x):
        # input x with shape [B, F, T]
        # FORWARD THROUGH DRN
        # ----------------------------
        if self.frontend is not None:
            x = self.frontend(x)
            if not self.ft_fe:
                x = x.detach()
        x = F.pad(x, (4, 5))
        x = self.drn(x)
        # FORWARD THROUGH RNN
        # ----------------------------
        x = x.transpose(1, 2)
        x, _ = self.rnn(x)
        xt = torch.chunk(x, x.shape[1], dim=1)
        x = xt[-1].transpose(1, 2)
        # FORWARD THROUGH DNn
        # ----------------------------
        x = self.mlp(x)
        return x 
開發者ID:santi-pdp,項目名稱:pase,代碼行數:22,代碼來源:classifiers.py

示例8: format_frontend_chunk

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import chunk [as 別名]
def format_frontend_chunk(batch, device='cpu'):
    if type(batch) == dict:
        if 'chunk_ctxt' and 'chunk_rand' in batch:
            keys = ['chunk', 'chunk_ctxt', 'chunk_rand', 'cchunk']
            # cluster all 'chunk's, including possible 'cchunk'
            batches = [batch[k] for k in keys if k in batch]
            x = torch.cat(batches, dim=0).to(device)
            # store the number of batches condensed as format
            data_fmt = len(batches)
        else:
            x = batch['chunk'].to(device)
            data_fmt = 1
    else:
        x = batch
        data_fmt = 0
    return x, data_fmt 
開發者ID:santi-pdp,項目名稱:pase,代碼行數:18,代碼來源:modules.py

示例9: forward

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import chunk [as 別名]
def forward(self, batch, device=None, mode=None):

        # batch possible chunk and contexts, or just forward non-dict tensor
        x, data_fmt = format_frontend_chunk(batch, device)

        sinc_out = self.sinc(x).unsqueeze(1)

        # print(sinc_out.shape)

        conv_out = self.conv1(sinc_out)

        # print(conv_out.shape)

        res_out = self.resnet(conv_out)

        # print(res_out.shape)

        h =self.conv2(res_out).squeeze(2)

        # print(h.shape)

        return format_frontend_output(h, data_fmt, mode) 
開發者ID:santi-pdp,項目名稱:pase,代碼行數:24,代碼來源:frontend.py

示例10: forward

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import chunk [as 別名]
def forward(self, x):
        h = self.frontend(x)
        if not self.ft_fe:
            h = h.detach()
        if hasattr(self, 'z_bnorm'):
            h = self.z_bnorm(h)
        ht, state = self.rnn(h.transpose(1, 2))
        if self.return_sequence:
            ht = ht.transpose(1, 2)
        else:
            if not self.uni:
                # pick last time-step for each dir
                # first chunk feat dim
                bsz, slen, feats = ht.size()
                ht = torch.chunk(ht.view(bsz, slen, 2, feats // 2), 2, dim=2)
                # now select fwd
                ht_fwd = ht[0][:, -1, 0, :].unsqueeze(2)
                ht_bwd = ht[1][:, 0, 0, :].unsqueeze(2)
                ht = torch.cat((ht_fwd, ht_bwd), dim=1)
            else:
                # just last time-step works
                ht = ht[:, -1, :].unsqueeze(2)
        y = self.model(ht)
        return y 
開發者ID:santi-pdp,項目名稱:pase,代碼行數:26,代碼來源:nnet.py

示例11: step

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import chunk [as 別名]
def step(i, j, g, lg, deg_g, deg_lg, pm_pd):
    """ One step of training. """
    deg_g = deg_g.to(dev)
    deg_lg = deg_lg.to(dev)
    pm_pd = pm_pd.to(dev)
    t0 = time.time()
    z = model(g, lg, deg_g, deg_lg, pm_pd)
    t_forward = time.time() - t0

    z_list = th.chunk(z, args.batch_size, 0)
    loss = sum(min(F.cross_entropy(z, y) for y in y_list) for z in z_list) / args.batch_size
    overlap = compute_overlap(z_list)

    optimizer.zero_grad()
    t0 = time.time()
    loss.backward()
    t_backward = time.time() - t0
    optimizer.step()

    return loss, overlap, t_forward, t_backward 
開發者ID:dmlc,項目名稱:dgl,代碼行數:22,代碼來源:train.py

示例12: forward

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import chunk [as 別名]
def forward(self, input):

        input = input.clone()
        input = self.preprocess_range(input)

        if self.preprocessing_type == 'caffe':

            r, g, b = torch.chunk(input, 3, dim=1)
            bgr = torch.cat([b, g, r], 1)
            out = bgr * 255 - self.vgg_mean

        elif self.preprocessing_type == 'pytorch':

            input = input - self.vgg_mean
            input = input / self.vgg_std

        output = input
        outputs = []
        
        for block in self.blocks:
            output = block(output)
            outputs.append(output)

        return outputs 
開發者ID:egorzakharov,項目名稱:PerceptualGAN,代碼行數:26,代碼來源:perceptual_loss.py

示例13: forward

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import chunk [as 別名]
def forward(self, x):
        if self.downsample:
            y1 = self.shortcut_dconv(x)
            y1 = self.shortcut_conv(y1)
            x2 = x
        else:
            y1, x2 = torch.chunk(x, chunks=2, dim=1)
        y2 = self.conv1(x2)
        y2 = self.dconv(y2)
        y2 = self.conv2(y2)
        if self.use_se:
            y2 = self.se(y2)
        if self.use_residual and not self.downsample:
            y2 = y2 + x2
        x = torch.cat((y1, y2), dim=1)
        x = self.c_shuffle(x)
        return x 
開發者ID:osmr,項目名稱:imgclsmob,代碼行數:19,代碼來源:shufflenetv2b.py

示例14: forward

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import chunk [as 別名]
def forward(ctx, x, fm, gm, *params):

        with torch.no_grad():
            x1, x2 = torch.chunk(x, chunks=2, dim=1)
            x1 = x1.contiguous()
            x2 = x2.contiguous()

            y1 = x1 + fm(x2)
            y2 = x2 + gm(y1)

            y = torch.cat((y1, y2), dim=1)

            x1.set_()
            x2.set_()
            y1.set_()
            y2.set_()
            del x1, x2, y1, y2

        ctx.save_for_backward(x, y)
        ctx.fm = fm
        ctx.gm = gm

        return y 
開發者ID:osmr,項目名稱:imgclsmob,代碼行數:25,代碼來源:revnet.py

示例15: forward

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import chunk [as 別名]
def forward(self, inputs, children, arities):

        i = self.wi_net(inputs)
        o = self.wo_net(inputs)
        u = self.wu_net(inputs)

        f_base = self.wf_net(inputs)
        fc_sum = inputs.new_zeros(self.memory_size)
        for k, child in enumerate(children):
            child_h, child_c = torch.chunk(child, 2, dim=1)
            i.add_(self.ui_nets[k](child_h))
            o.add_(self.uo_nets[k](child_h))
            u.add_(self.uu_nets[k](child_h))

            f = f_base
            for l, other_child in enumerate(children):
                other_child_h, _ = torch.chunk(other_child, 2, dim=1)
                f = f.add(self.uf_nets[k][l](other_child_h))
            fc_sum.add(torch.sigmoid(f) * child_c)

        c = torch.sigmoid(i) * torch.tanh(u) + fc_sum
        h = torch.sigmoid(o) * torch.tanh(c)
        return torch.cat([h, c], dim=1) 
開發者ID:epfl-lara,項目名稱:treenet,代碼行數:25,代碼來源:treelstm.py


注:本文中的torch.chunk方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。