本文整理匯總了Python中torch.bernoulli方法的典型用法代碼示例。如果您正苦於以下問題:Python torch.bernoulli方法的具體用法?Python torch.bernoulli怎麽用?Python torch.bernoulli使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類torch
的用法示例。
在下文中一共展示了torch.bernoulli方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: forward
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import bernoulli [as 別名]
def forward(self, x0, x1, x2, x3):
if self.p > 0 and self.training:
coef = torch.bernoulli((1.0 - self.p) * torch.ones(8))
out1 = coef[0] * self.block01(x0) + coef[1] * self.block11(x1) + coef[2] * self.block21(x2)
out2 = coef[3] * self.block12(x1) + coef[4] * self.block22(x2) + coef[5] * self.block32(x3)
out3 = coef[6] * self.block23(x2) + coef[7] * self.block33(x3)
else:
out1 = (1 - self.p) * (self.block01(x0) + self.block11(x1) + self.block21(x2))
out2 = (1 - self.p) * (self.block12(x1) + self.block22(x2) + self.block32(x3))
out3 = (1 - self.p) * (self.block23(x2) + self.block33(x3))
if self.integrate:
out1 += x1
out2 += x2
out3 += x3
return x0, self.relu(out1), self.relu(out2), self.relu(out3)
示例2: forward
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import bernoulli [as 別名]
def forward(self, x):
if (not self.training or self.keep_prob==1): #set keep_prob=1 to turn off dropblock
return x
if self.gamma is None:
self.gamma = self.calculate_gamma(x)
if x.type() == 'torch.cuda.HalfTensor': #TODO: not fully support for FP16 now
FP16 = True
x = x.float()
else:
FP16 = False
p = torch.ones_like(x) * (self.gamma)
mask = 1 - torch.nn.functional.max_pool2d(torch.bernoulli(p),
self.kernel_size,
self.stride,
self.padding)
out = mask * x * (mask.numel()/mask.sum())
if FP16:
out = out.half()
return out
示例3: drop_word
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import bernoulli [as 別名]
def drop_word(self, words):
r"""
按照設定隨機將words設置為unknown_index。
:param torch.LongTensor words: batch_size x max_len
:return:
"""
if self.word_dropout > 0 and self.training:
with torch.no_grad():
mask = torch.full_like(words, fill_value=self.word_dropout, dtype=torch.float, device=words.device)
mask = torch.bernoulli(mask).eq(1) # dropout_word越大,越多位置為1
pad_mask = words.ne(self._word_pad_index)
mask = pad_mask.__and__(mask) # pad的位置不為unk
if self._word_sep_index!=-100:
not_sep_mask = words.ne(self._word_sep_index)
mask = mask.__and__(not_sep_mask)
if self._word_cls_index!=-100:
not_cls_mask = words.ne(self._word_cls_index)
mask = mask.__and__(not_cls_mask)
words = words.masked_fill(mask, self._word_unk_index)
return words
示例4: make_data
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import bernoulli [as 別名]
def make_data(batch, augment=False,
singleton_idx=None, unk_idx=None,
):
sentences = batch.sentences
tags, lengths = batch.tags
letters, letters_lengths = batch.letters
# Data augmentation for <unk> embedding training
if augment:
indices = torch.zeros_like(tags)
bernoulli = torch.FloatTensor(*tags.shape,).fill_(.3)
bernoulli = torch.bernoulli(bernoulli).byte()
bernoulli = bernoulli.to(tags.device)
indices = indices.byte()
for rep in singleton_idx:
indices = indices | (tags == rep)
indices = indices & bernoulli
sentences[indices] = unk_idx
return sentences, tags, lengths, letters, letters_lengths
示例5: corrupt
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import bernoulli [as 別名]
def corrupt(self, src, rel, dst, keep_truth=True):
n = len(src)
prob = self.bern_prob[rel]
selection = torch.bernoulli(prob).numpy().astype('bool')
src_out = np.tile(src.numpy(), (self.n_sample, 1)).transpose()
dst_out = np.tile(dst.numpy(), (self.n_sample, 1)).transpose()
rel_out = rel.unsqueeze(1).expand(n, self.n_sample)
if keep_truth:
ent_random = choice(self.n_ent, (n, self.n_sample - 1))
src_out[selection, 1:] = ent_random[selection]
dst_out[~selection, 1:] = ent_random[~selection]
else:
ent_random = choice(self.n_ent, (n, self.n_sample))
src_out[selection, :] = ent_random[selection]
dst_out[~selection, :] = ent_random[~selection]
return torch.from_numpy(src_out), rel_out, torch.from_numpy(dst_out)
示例6: train
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import bernoulli [as 別名]
def train(self):
for epoch in range(10):
for it, (x, y) in enumerate(self.data_loader):
self.optim.zero_grad()
x = torch.bernoulli(x)
x = Variable(x.view(-1, 784))
out = nn_.sigmoid(self.mdl(x)[:,:,0])
loss = utils.bceloss(out, x).sum(1).mean()
loss.backward()
self.optim.step()
if ((it + 1) % 10) == 0:
print 'Epoch: [%2d] [%4d/%4d] loss: %.8f' % \
(epoch+1, it+1,
self.data_loader.dataset.__len__() // 32,
loss.data[0])
self.mdl.randomize()
示例7: train
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import bernoulli [as 別名]
def train(self):
for epoch in range(10):
for it, (x, y) in enumerate(self.data_loader):
self.optim.zero_grad()
x = torch.bernoulli(x)
if cuda:
x = x.cuda()
x = Variable(x.view(-1, 1, 28, 28))
out = nn_.sigmoid(self.mdl((x,0))[0]).permute(0,3,1,2)
loss = utils.bceloss(out, x).sum(1).sum(1).sum(1).mean()
loss.backward()
self.optim.step()
if ((it + 1) % 100) == 0:
print 'Epoch: [%2d] [%4d/%4d] loss: %.8f' % \
(epoch+1, it+1,
self.data_loader.dataset.__len__() // 32,
loss.data[0])
示例8: test_rmax
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import bernoulli [as 別名]
def test_rmax(self):
# Connection test
network = Network(dt=1.0)
network.add_layer(Input(n=100, traces=True, traces_additive=True), name="input")
network.add_layer(SRM0Nodes(n=100), name="output")
network.add_connection(
Connection(
source=network.layers["input"],
target=network.layers["output"],
nu=1e-2,
update_rule=Rmax,
),
source="input",
target="output",
)
network.run(
inputs={"input": torch.bernoulli(torch.rand(250, 100)).byte()},
time=250,
reward=1.0,
)
示例9: gen_inputs_labels
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import bernoulli [as 別名]
def gen_inputs_labels(self, inputs, masked_indices):
# We sample a few tokens in each sequence for masked-LM training (with probability mlm_probability defaults to 0.15 in Bert/RoBERTa)
inputs = inputs.clone()
labels = inputs.clone()
labels[~masked_indices] = -100 # We only compute loss on masked tokens
# 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK])
indices_replaced = torch.bernoulli(torch.full(labels.shape, 0.8)).bool() & masked_indices
inputs[indices_replaced] = self.tokenizer.convert_tokens_to_ids(self.tokenizer.mask_token)
# 10% of the time, we replace masked input tokens with random word
indices_random = torch.bernoulli(torch.full(labels.shape, 0.5)).bool() & masked_indices & ~indices_replaced
random_words = torch.randint(len(self.tokenizer), labels.shape, dtype=torch.long)
inputs[indices_random] = random_words[indices_random]
# The rest of the time (10% of the time) we keep the masked input tokens unchanged
return inputs, labels
示例10: sample
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import bernoulli [as 別名]
def sample(self, n_samples=1, resample=False):
"""
Draw samples from the distribution.
Args:
n_samples (int): number of samples to draw
resample (bool): whether to resample or just use current sample
"""
if self._sample is None or resample:
assert self.mean is not None, 'Mean is None.'
mean = self.mean
if len(mean.size()) == 2:
mean = mean.unsqueeze(1).repeat(1, n_samples, 1)
elif len(mean.size()) == 4:
mean = mean.unsqueeze(1).repeat(1, n_samples, 1, 1, 1)
self._sample = torch.bernoulli(mean)
return self._sample
示例11: mask_tokens
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import bernoulli [as 別名]
def mask_tokens(inputs, tokenizer, args):
""" Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original. """
labels = inputs.clone()
# We sample a few tokens in each sequence for masked-LM training (with probability args.mlm_probability defaults to 0.15 in Bert/RoBERTa)
probability_matrix = torch.full(labels.shape, args.mlm_probability)
special_tokens_mask = [tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True) for val in labels.tolist()]
probability_matrix.masked_fill_(torch.tensor(special_tokens_mask, dtype=torch.bool), value=0.0)
masked_indices = torch.bernoulli(probability_matrix).bool()
labels[~masked_indices] = -1 # We only compute loss on masked tokens
# 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK])
indices_replaced = torch.bernoulli(torch.full(labels.shape, 0.8)).bool() & masked_indices
inputs[indices_replaced] = tokenizer.convert_tokens_to_ids(tokenizer.mask_token)
# 10% of the time, we replace masked input tokens with random word
indices_random = torch.bernoulli(torch.full(labels.shape, 0.5)).bool() & masked_indices & ~indices_replaced
random_words = torch.randint(len(tokenizer), labels.shape, dtype=torch.long)
inputs[indices_random] = random_words[indices_random]
# The rest of the time (10% of the time) we keep the masked input tokens unchanged
return inputs, labels
示例12: mask_tokens
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import bernoulli [as 別名]
def mask_tokens(inputs, tokenizer, args):
""" Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original. """
labels = inputs.clone()
# We sample a few tokens in each sequence for masked-LM training (with probability args.mlm_probability defaults to 0.15 in Bert/RoBERTa)
probability_matrix = torch.full(labels.shape, args.mlm_probability)
special_tokens_mask = [tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True) for val in labels.tolist()]
probability_matrix.masked_fill_(torch.tensor(special_tokens_mask, dtype=torch.bool), value=0.0)
masked_indices = torch.bernoulli(probability_matrix).bool()
labels[~masked_indices] = -1 # We only compute loss on masked tokens
# 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK])
indices_replaced = torch.bernoulli(torch.full(labels.shape, 0.8)).bool() & masked_indices
inputs[indices_replaced] = tokenizer.convert_tokens_to_ids(tokenizer.mask_token)
# 10% of the time, we replace masked input tokens with random word
indices_random = torch.bernoulli(torch.full(labels.shape, 0.5)).bool() & masked_indices & ~indices_replaced
random_words = torch.randint(len(tokenizer), labels.shape, dtype=torch.long)
inputs[indices_random] = random_words[indices_random]
# The rest of the time (10% of the time) we keep the masked input tokens unchanged
return inputs, labels
# from transformers/modeling_utils.py, adapted to tpu
示例13: draw
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import bernoulli [as 別名]
def draw(self, *size):
"""Draw N samples from multinomial
Args:
- size: the output size of samples
"""
max_value = self.alias.size(0)
kk = self.alias.new(*size).random_(0, max_value).long().view(-1)
prob = self.prob[kk]
alias = self.alias[kk]
# b is whether a random number is greater than q
b = torch.bernoulli(prob).long()
oq = kk.mul(b)
oj = alias.mul(1 - b)
return (oq + oj).view(size)
示例14: run_episode
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import bernoulli [as 別名]
def run_episode(env, weight):
state = env.reset()
grads = []
total_reward = 0
is_done = False
while not is_done:
state = torch.from_numpy(state).float()
z = torch.matmul(state, weight)
probs = torch.nn.Softmax()(z)
action = int(torch.bernoulli(probs[1]).item())
d_softmax = torch.diag(probs) - probs.view(-1, 1) * probs
d_log = d_softmax[action] / probs[action]
grad = state.view(-1, 1) * d_log
grads.append(grad)
state, reward, is_done, _ = env.step(action)
total_reward += reward
if is_done:
break
return total_reward, grads
開發者ID:PacktPublishing,項目名稱:PyTorch-1.x-Reinforcement-Learning-Cookbook,代碼行數:21,代碼來源:policy_gradient.py
示例15: same_dropout
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import bernoulli [as 別名]
def same_dropout(data_tensor, dropout_p, dim, is_model_training):
"""
Drops the same random elements of a Tensor across the specified dimension, during training.
:param data_tensor: ND Tensor.
:param dropout_p: The dropout probability.
:param dim: Int that corresponds to the dimension.
:param is_model_training: Whether the model is currently training.
:return: ND Tensor.
"""
if dim < 0:
dim = len(data_tensor.shape) + dim
if dropout_p is None or dropout_p == 0 or not is_model_training:
return data_tensor
assert 0 <= dropout_p < 1, 'dropout probability must be in range [0,1)'
shape = list(data_tensor.shape)
shape[dim] = 1
dp = torch.empty(*shape, dtype=torch.float, device=data_tensor.device)
dp = torch.bernoulli(dp.fill_((1 - dropout_p))) / (1 - dropout_p)
return data_tensor * dp