當前位置: 首頁>>代碼示例>>Python>>正文


Python torch.argsort方法代碼示例

本文整理匯總了Python中torch.argsort方法的典型用法代碼示例。如果您正苦於以下問題:Python torch.argsort方法的具體用法?Python torch.argsort怎麽用?Python torch.argsort使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在torch的用法示例。


在下文中一共展示了torch.argsort方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: order_points

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import argsort [as 別名]
def order_points(pts):
    pts_reorder = []

    for idx, pt in enumerate(pts):
        idx = torch.argsort(pt[:, 0])
        xSorted = pt[idx, :]
        leftMost = xSorted[:2, :]
        rightMost = xSorted[2:, :]

        leftMost = leftMost[torch.argsort(leftMost[:, 1]), :]
        (tl, bl) = leftMost

        D = torch.cdist(tl[np.newaxis], rightMost)[0]
        (br, tr) = rightMost[torch.argsort(D, descending=True), :]
        pts_reorder.append(torch.stack([tl, tr, br, bl]))

    return torch.stack([p for p in pts_reorder]) 
開發者ID:NVIDIA,項目名稱:retinanet-examples,代碼行數:19,代碼來源:utils.py

示例2: get_mask

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import argsort [as 別名]
def get_mask(self, base_mask, weight, num_prune, wrapper, wrapper_idx):
        assert wrapper_idx is not None
        activations = self.pruner.collected_activation[wrapper_idx]
        if len(activations) < self.statistics_batch_num:
            return None
        mean_activation = self._cal_mean_activation(activations)
        prune_indices = torch.argsort(mean_activation)[:num_prune]
        for idx in prune_indices:
            base_mask['weight_mask'][idx] = 0.
            if base_mask['bias_mask'] is not None:
                base_mask['bias_mask'][idx] = 0.

        if len(activations) >= self.statistics_batch_num and self.pruner.hook_id in self.pruner._fwd_hook_handles:
            self.pruner.remove_activation_collector(self.pruner.hook_id)

        return base_mask 
開發者ID:microsoft,項目名稱:nni,代碼行數:18,代碼來源:structured_pruning.py

示例3: compute

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import argsort [as 別名]
def compute(self, pred: torch.Tensor, target: torch.Tensor) \
            -> torch.Tensor:
        """Computes the recall @ k.

        Parameters
        ----------
        pred: Tensor
            input logits of shape (B x N)
        target: LongTensor
            target tensor of shape (B) or (B x N)

        Returns
        -------
        recall: torch.Tensor
            single label recall, of shape (B)

        """
        # If 2-dimensional, select the highest score in each row
        if len(target.size()) == 2:
            target = target.argmax(dim=1)

        ranked_scores = torch.argsort(pred, dim=1)[:, -self.top_k:]
        recalled = torch.sum((target.unsqueeze(1) == ranked_scores).float(), dim=1)
        return recalled.mean() 
開發者ID:asappresearch,項目名稱:flambe,代碼行數:26,代碼來源:recall.py

示例4: _get_augmented_pareto_front_indices

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import argsort [as 別名]
def _get_augmented_pareto_front_indices(self) -> Tensor:
        r"""Get indices of augmented pareto front."""
        pf_idx = torch.argsort(self._pareto_Y, dim=0)
        return torch.cat(
            [
                torch.zeros(
                    1, self.num_outcomes, dtype=torch.long, device=self.Y.device
                ),
                # Add 1 because index zero is used for the ideal point
                pf_idx + 1,
                torch.full(
                    torch.Size([1, self.num_outcomes]),
                    self._pareto_Y.shape[0] + 1,
                    dtype=torch.long,
                    device=self.Y.device,
                ),
            ],
            dim=0,
        ) 
開發者ID:pytorch,項目名稱:botorch,代碼行數:21,代碼來源:box_decomposition.py

示例5: _run_encoder

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import argsort [as 別名]
def _run_encoder(self, batch):
        src, src_lengths = batch.src if isinstance(batch.src, tuple) \
                           else (batch.src, None)

        # added by @memray, resort examples in batch by lengths first
        sort_idx = torch.argsort(src_lengths, descending=True)
        sorted_src = src[:,sort_idx,:]
        sorted_src_lengths = src_lengths[sort_idx]
        unsort_idx = torch.argsort(sort_idx)

        enc_states, memory_bank, src_lengths = self.model.encoder(
            sorted_src, sorted_src_lengths)

        enc_states = enc_states[:, unsort_idx, :]
        memory_bank = memory_bank[:, unsort_idx, :]
        src_lengths = src_lengths[unsort_idx]

        if src_lengths is None:
            assert not isinstance(memory_bank, tuple), \
                'Ensemble decoding only supported for text data'
            src_lengths = torch.Tensor(batch.batch_size) \
                               .type_as(memory_bank) \
                               .long() \
                               .fill_(memory_bank.size(0))
        return src, enc_states, memory_bank, src_lengths 
開發者ID:memray,項目名稱:OpenNMT-kpg-release,代碼行數:27,代碼來源:translator.py

示例6: _inverse_permutation

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import argsort [as 別名]
def _inverse_permutation(self):
        return torch.argsort(self._permutation) 
開發者ID:bayesiains,項目名稱:nsf,代碼行數:4,代碼來源:permutations.py

示例7: test_compute_edge_score_tanh

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import argsort [as 別名]
def test_compute_edge_score_tanh():
    edge_index = torch.tensor([[0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 5],
                               [1, 2, 3, 0, 2, 3, 0, 1, 3, 0, 1, 2, 5, 4]])
    raw = torch.randn(edge_index.size(1))
    e = EdgePooling.compute_edge_score_tanh(raw, edge_index, 6)
    assert torch.all(e >= -1) and torch.all(e <= 1)
    assert torch.all(torch.argsort(raw) == torch.argsort(e)) 
開發者ID:rusty1s,項目名稱:pytorch_geometric,代碼行數:9,代碼來源:test_edge_pool.py

示例8: test_compute_edge_score_sigmoid

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import argsort [as 別名]
def test_compute_edge_score_sigmoid():
    edge_index = torch.tensor([[0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 5],
                               [1, 2, 3, 0, 2, 3, 0, 1, 3, 0, 1, 2, 5, 4]])
    raw = torch.randn(edge_index.size(1))
    e = EdgePooling.compute_edge_score_sigmoid(raw, edge_index, 6)
    assert torch.all(e >= 0) and torch.all(e <= 1)
    assert torch.all(torch.argsort(raw) == torch.argsort(e)) 
開發者ID:rusty1s,項目名稱:pytorch_geometric,代碼行數:9,代碼來源:test_edge_pool.py

示例9: build_part_with_score_torch

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import argsort [as 別名]
def build_part_with_score_torch(score_threshold, local_max_radius, scores):
    lmd = 2 * local_max_radius + 1
    max_vals = F.max_pool2d(scores, lmd, stride=1, padding=1)
    max_loc = (scores == max_vals) & (scores >= score_threshold)
    max_loc_idx = max_loc.nonzero()
    scores_vec = scores[max_loc]
    sort_idx = torch.argsort(scores_vec, descending=True)
    return scores_vec[sort_idx], max_loc_idx[sort_idx]


# FIXME leaving here as reference for now
# def build_part_with_score_fast(score_threshold, local_max_radius, scores):
#     parts = []
#     num_keypoints = scores.shape[0]
#     lmd = 2 * local_max_radius + 1
#
#     # NOTE it seems faster to iterate over the keypoints and perform maximum_filter
#     # on each subarray vs doing the op on the full score array with size=(lmd, lmd, 1)
#     for keypoint_id in range(num_keypoints):
#         kp_scores = scores[keypoint_id, :, :].copy()
#         kp_scores[kp_scores < score_threshold] = 0.
#         max_vals = ndi.maximum_filter(kp_scores, size=lmd, mode='constant')
#         max_loc = np.logical_and(kp_scores == max_vals, kp_scores > 0)
#         max_loc_idx = max_loc.nonzero()
#         for y, x in zip(*max_loc_idx):
#             parts.append((
#                 scores[keypoint_id, y, x],
#                 keypoint_id,
#                 np.array((y, x))
#             ))
#
#    return parts 
開發者ID:rwightman,項目名稱:posenet-pytorch,代碼行數:34,代碼來源:decode_multi.py

示例10: argsort

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import argsort [as 別名]
def argsort(input, dim, descending):
    return th.argsort(input, dim=dim, descending=descending) 
開發者ID:dmlc,項目名稱:dgl,代碼行數:4,代碼來源:tensor.py

示例11: get_rank

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import argsort [as 別名]
def get_rank(batch_score, dim=0):
    rank = torch.argsort(batch_score, dim=dim)
    rank = torch.argsort(rank, dim=dim)
    rank = (rank * -1) + batch_score.size(dim)
    rank = rank.float()
    rank = rank / batch_score.size(dim)

    return rank 
開發者ID:technicolor-research,項目名稱:sodeep,代碼行數:10,代碼來源:utils.py

示例12: __getitem__

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import argsort [as 別名]
def __getitem__(self, index):
        rand_seq = get_rand_seq(self.seq_len, self.dist)
        zipp_sort_ind = zip(np.argsort(rand_seq)[::-1], range(self.seq_len))

        ranks = [((y[1] + 1) / float(self.seq_len)) for y in sorted(zipp_sort_ind, key=lambda x: x[0])]

        return torch.FloatTensor(rand_seq), torch.FloatTensor(ranks) 
開發者ID:technicolor-research,項目名稱:sodeep,代碼行數:9,代碼來源:dataset.py

示例13: get_rank_single

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import argsort [as 別名]
def get_rank_single(batch_score):
        rank = torch.argsort(batch_score, dim=0)
        rank = torch.argsort(rank, dim=0)
        rank = (rank * -1) + batch_score.size(0)
        rank = rank.float()
        rank = rank / batch_score.size(0)

        return rank 
開發者ID:technicolor-research,項目名稱:sodeep,代碼行數:10,代碼來源:dataset.py

示例14: energy_spectrum

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import argsort [as 別名]
def energy_spectrum(vel):
    """
    Compute energy spectrum given a velocity field
    :param vel: tensor of shape (N, 3, res, res, res)
    :return spec: tensor of shape(N, res/2)
    :return k: tensor of shape (res/2,), frequencies corresponding to spec
    """
    device = vel.device
    res = vel.shape[-2:]

    assert(res[0] == res[1])
    r = res[0]
    k_end = int(r/2)
    vel_ = pad_rfft3(vel, onesided=False) # (N, 3, res, res, res, 2)
    uu_ = (torch.norm(vel_, dim=-1) / r**3)**2
    e_ = torch.sum(uu_, dim=1)  # (N, res, res, res)
    k = fftfreqs(res).to(device) # (3, res, res, res)
    rad = torch.norm(k, dim=0) # (res, res, res)
    k_bin = torch.arange(k_end, device=device).float()+1
    bins = torch.zeros(k_end+1).to(device)
    bins[1:-1] = (k_bin[1:]+k_bin[:-1])/2
    bins[-1] = k_bin[-1]
    bins = bins.unsqueeze(0)
    bins[1:] += 1e-3
    inds = searchsorted(bins, rad.flatten().unsqueeze(0)).squeeze().int()
    # bincount = torch.histc(inds.cpu(), bins=bins.shape[1]+1).to(device)
    bincount = torch.bincount(inds)
    asort = torch.argsort(inds.squeeze())
    sorted_e_ = e_.view(e_.shape[0], -1)[:, asort]
    csum_e_ = torch.cumsum(sorted_e_, dim=1)
    binloc = torch.cumsum(bincount, dim=0).long()-1
    spec_ = csum_e_[:,binloc[1:]] - csum_e_[:,binloc[:-1]]
    spec_ = spec_[:, :-1]
    spec_ = spec_ * 2 * np.pi * (k_bin.float()**2) / bincount[1:-1].float()
    return spec_, k_bin


##################### COMPUTE STATS ########################### 
開發者ID:maxjiang93,項目名稱:space_time_pde,代碼行數:40,代碼來源:torch_flow_stats.py

示例15: word_shuffle

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import argsort [as 別名]
def word_shuffle(x, l, shuffle_len):
    if not shuffle_len:
        return x

    noise = torch.rand(x.size(), dtype=torch.float).to(x.device)
    pos_idx = torch.arange(x.size(1)).unsqueeze(0).expand_as(x).to(x.device)
    pad_mask = (pos_idx >= l.unsqueeze(1)).float()

    scores = pos_idx.float() + ((1 - pad_mask) * noise + pad_mask) * shuffle_len
    x2 = x.clone()
    x2 = x2.gather(1, scores.argsort(1))

    return x2 
開發者ID:plkmo,項目名稱:NLP_Toolkit,代碼行數:15,代碼來源:utils.py


注:本文中的torch.argsort方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。