當前位置: 首頁>>代碼示例>>Python>>正文


Python _utils._unflatten_dense_tensors方法代碼示例

本文整理匯總了Python中torch._utils._unflatten_dense_tensors方法的典型用法代碼示例。如果您正苦於以下問題:Python _utils._unflatten_dense_tensors方法的具體用法?Python _utils._unflatten_dense_tensors怎麽用?Python _utils._unflatten_dense_tensors使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在torch._utils的用法示例。


在下文中一共展示了_utils._unflatten_dense_tensors方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: flat_dist_call

# 需要導入模塊: from torch import _utils [as 別名]
# 或者: from torch._utils import _unflatten_dense_tensors [as 別名]
def flat_dist_call(tensors, call, extra_args=None):
    flat_dist_call.warn_on_half = True
    buckets = {}
    for tensor in tensors:
        tp = tensor.type()
        if tp not in buckets:
            buckets[tp] = []
        buckets[tp].append(tensor)
                    
    if flat_dist_call.warn_on_half:
        if torch.cuda.HalfTensor in buckets:
            print("WARNING: gloo dist backend for half parameters may be extremely slow." +
                  " It is recommended to use the NCCL backend in this case.")
            flat_dist_call.warn_on_half = False

    for tp in buckets:
        bucket = buckets[tp]
        coalesced = _flatten_dense_tensors(bucket)
        if extra_args is not None:
            call(coalesced, *extra_args)
        else:
            call(coalesced)
        coalesced /= dist.get_world_size()
        for buf, synced in zip(bucket, _unflatten_dense_tensors(coalesced, bucket)):
            buf.copy_(synced) 
開發者ID:fastai,項目名稱:imagenet-fast,代碼行數:27,代碼來源:distributed.py

示例2: _allreduce_coalesced

# 需要導入模塊: from torch import _utils [as 別名]
# 或者: from torch._utils import _unflatten_dense_tensors [as 別名]
def _allreduce_coalesced(tensors, world_size, bucket_size_mb=-1):
    if bucket_size_mb > 0:
        bucket_size_bytes = bucket_size_mb * 1024 * 1024
        buckets = _take_tensors(tensors, bucket_size_bytes)
    else:
        buckets = OrderedDict()
        for tensor in tensors:
            tp = tensor.type()
            if tp not in buckets:
                buckets[tp] = []
            buckets[tp].append(tensor)
        buckets = buckets.values()

    for bucket in buckets:
        flat_tensors = _flatten_dense_tensors(bucket)
        dist.all_reduce(flat_tensors)
        flat_tensors.div_(world_size)
        for tensor, synced in zip(
            bucket, _unflatten_dense_tensors(flat_tensors, bucket)
        ):
            tensor.copy_(synced) 
開發者ID:poodarchu,項目名稱:Det3D,代碼行數:23,代碼來源:dist_utils.py

示例3: __init__

# 需要導入模塊: from torch import _utils [as 別名]
# 或者: from torch._utils import _unflatten_dense_tensors [as 別名]
def __init__(self, module):
        super(DistributedDataParallel, self).__init__()
        self.warn_on_half = True#$ True if dist._backend == dist.dist_backend.GLOO else False

        self.module = module

        for p in self.module.state_dict().values():
            if torch.is_tensor(p):
                dist.broadcast(p, 0)

        def allreduce_params():
            if(self.needs_reduction):
                self.needs_reduction = False
                buckets = {}
                for param in self.module.parameters():
                    if param.requires_grad and param.grad is not None:
                        tp = type(param.data)
                        if tp not in buckets:
                            buckets[tp] = []
                        buckets[tp].append(param)
                if self.warn_on_half:
                    if torch.cuda.HalfTensor in buckets:
                        print("WARNING: gloo dist backend for half parameters may be extremely slow." +
                              " It is recommended to use the NCCL backend in this case.")
                        self.warn_on_half = False

                for tp in buckets:
                    bucket = buckets[tp]
                    grads = [param.grad.data for param in bucket]
                    coalesced = _flatten_dense_tensors(grads)
                    dist.all_reduce(coalesced)
                    coalesced /= dist.get_world_size()
                    for buf, synced in zip(grads, _unflatten_dense_tensors(coalesced, grads)):
                        buf.copy_(synced)

        for param in list(self.module.parameters()):
            if param.requires_grad:
               def allreduce_hook(*unused):
                   param._execution_engine.queue_callback(allreduce_params)
               param.register_hook(allreduce_hook) 
開發者ID:salesforce,項目名稱:decaNLP,代碼行數:42,代碼來源:distributed_data_parallel.py

示例4: master2model

# 需要導入模塊: from torch import _utils [as 別名]
# 或者: from torch._utils import _unflatten_dense_tensors [as 別名]
def master2model(model_params, master_params, flat_master: bool = False) -> None:
    "Copy `master_params` to `model_params`."
    if flat_master:
        for model_group, master_group in zip(model_params, master_params):
            if len(model_group) != 0:
                for model, master in zip(model_group, _unflatten_dense_tensors(master_group[0].data, model_group)):
                    model.data.copy_(master)
    else:
        for model_group, master_group in zip(model_params, master_params):
            for model, master in zip(model_group, master_group): model.data.copy_(master.data) 
開發者ID:sshaoshuai,項目名稱:PointRCNN,代碼行數:12,代碼來源:fastai_optim.py

示例5: __init__

# 需要導入模塊: from torch import _utils [as 別名]
# 或者: from torch._utils import _unflatten_dense_tensors [as 別名]
def __init__(self, module):
        super(DistributedDataParallel, self).__init__()
        self.module = module
        self.first_call = True

        def allreduce_params():
            if (self.needs_reduction):
                self.needs_reduction = False
                buckets = {}
                for param in self.module.parameters():
                    if param.requires_grad and param.grad is not None:
                        tp = type(param.data)
                        if tp not in buckets:
                            buckets[tp] = []
                        buckets[tp].append(param)

                for tp in buckets:
                    bucket = buckets[tp]
                    grads = [param.grad.data for param in bucket]
                    coalesced = _flatten_dense_tensors(grads)
                    dist.all_reduce(coalesced)
                    coalesced /= dist.get_world_size()
                    for buf, synced in zip(grads, _unflatten_dense_tensors(coalesced, grads)):
                        buf.copy_(synced)

        for param in list(self.module.parameters()):
            def allreduce_hook(*unused):
                Variable._execution_engine.queue_callback(allreduce_params)

            if param.requires_grad:
                param.register_hook(allreduce_hook) 
開發者ID:jinserk,項目名稱:pytorch-asr,代碼行數:33,代碼來源:distributed.py

示例6: synchronize

# 需要導入模塊: from torch import _utils [as 別名]
# 或者: from torch._utils import _unflatten_dense_tensors [as 別名]
def synchronize(self):
        synced = False
        if self.count_down == 0:
            missing_p = self._requires_update - set(self._handles.keys())
            for p in missing_p:
                self._allreduce_tensor(p)

            if self._multi_node:
                for p, value in self._handles.items():
                    handle, ctx = value
                    output = synchronize(handle)
                    p.grad.set_(self._compression.decompress(output, ctx) / self.accumulation_step)
            else:
                buckets = OrderedDict()
                for tensor in self._handles.values():
                    tp = tensor.type()
                    if tp not in buckets:
                        buckets[tp] = []
                    buckets[tp].append(tensor)
                for tp in buckets:
                    bucket = buckets[tp]
                    coalesced = flatten(bucket) / self.world_size / self.accumulation_step
                    torch.distributed.all_reduce_multigpu([coalesced])
                    for buf, synced in zip(bucket, unflatten(coalesced, bucket)):
                        buf.copy_(synced)
            self._handles.clear()
            synced = True
            self.count_down = self.accumulation_step

        self.count_down -= 1
        return synced 
開發者ID:microsoft,項目名稱:nlp-recipes,代碼行數:33,代碼來源:azureml_bert_util.py

示例7: _dist_broadcast_coalesced

# 需要導入模塊: from torch import _utils [as 別名]
# 或者: from torch._utils import _unflatten_dense_tensors [as 別名]
def _dist_broadcast_coalesced(self, tensors, buffer_size):
        for tensors in _take_tensors(tensors, buffer_size):
            flat_tensors = _flatten_dense_tensors(tensors)
            dist.broadcast(flat_tensors, 0)
            for tensor, synced in zip(
                tensors, _unflatten_dense_tensors(flat_tensors, tensors)
            ):
                tensor.copy_(synced) 
開發者ID:poodarchu,項目名稱:Det3D,代碼行數:10,代碼來源:distributed.py

示例8: __init__

# 需要導入模塊: from torch import _utils [as 別名]
# 或者: from torch._utils import _unflatten_dense_tensors [as 別名]
def __init__(self, module):
        super(DistributedDataParallel, self).__init__()
        self.warn_on_half = True if dist._backend == dist.dist_backend.GLOO else False

        self.module = module

        for p in self.module.state_dict().values():
            if not torch.is_tensor(p):
                continue
            if dist._backend == dist.dist_backend.NCCL:
                assert p.is_cuda, "NCCL backend only supports model parameters to be on GPU."
            dist.broadcast(p, 0)

        def allreduce_params():
            if(self.needs_reduction):
                self.needs_reduction = False
                buckets = {}
                for param in self.module.parameters():
                    if param.requires_grad and param.grad is not None:
                        tp = param.data.type()
                        if tp not in buckets:
                            buckets[tp] = []
                        buckets[tp].append(param)
                if self.warn_on_half:
                    if torch.cuda.HalfTensor in buckets:
                        print("WARNING: gloo dist backend for half parameters may be extremely slow." +
                              " It is recommended to use the NCCL backend in this case.")
                        self.warn_on_half = False

                for tp in buckets:
                    bucket = buckets[tp]
                    grads = [param.grad.data for param in bucket]
                    coalesced = _flatten_dense_tensors(grads)
                    dist.all_reduce(coalesced)
                    coalesced /= dist.get_world_size()
                    for buf, synced in zip(grads, _unflatten_dense_tensors(coalesced, grads)):
                        buf.copy_(synced)

        for param in list(self.module.parameters()):
            def allreduce_hook(*unused):
                param._execution_engine.queue_callback(allreduce_params)
            if param.requires_grad:
                param.register_hook(allreduce_hook) 
開發者ID:mlperf,項目名稱:training_results_v0.5,代碼行數:45,代碼來源:distributed.py

示例9: apply_gradient_allreduce

# 需要導入模塊: from torch import _utils [as 別名]
# 或者: from torch._utils import _unflatten_dense_tensors [as 別名]
def apply_gradient_allreduce(module):

    # sync model parameters
    for p in module.state_dict().values():
        if not torch.is_tensor(p):
            continue
        dist.broadcast(p, 0)

    def allreduce_params():
        if module.needs_reduction:
            module.needs_reduction = False
            # bucketing params based on value types
            buckets = {}
            for param in module.parameters():
                if param.requires_grad and param.grad is not None:
                    tp = type(param.data)
                    if tp not in buckets:
                        buckets[tp] = []
                    buckets[tp].append(param)
            for tp in buckets:
                bucket = buckets[tp]
                grads = [param.grad.data for param in bucket]
                coalesced = _flatten_dense_tensors(grads)
                dist.all_reduce(coalesced, op=dist.reduce_op.SUM)
                coalesced /= dist.get_world_size()
                for buf, synced in zip(
                        grads, _unflatten_dense_tensors(coalesced, grads)):
                    buf.copy_(synced)

    for param in list(module.parameters()):

        def allreduce_hook(*_):
            Variable._execution_engine.queue_callback(allreduce_params)

        if param.requires_grad:
            param.register_hook(allreduce_hook)

    def set_needs_reduction(self, *_):
        self.needs_reduction = True

    module.register_forward_hook(set_needs_reduction)
    return module 
開發者ID:mozilla,項目名稱:TTS,代碼行數:44,代碼來源:distribute.py


注:本文中的torch._utils._unflatten_dense_tensors方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。