本文整理匯總了Python中torch._six.container_abcs.Sequence方法的典型用法代碼示例。如果您正苦於以下問題:Python container_abcs.Sequence方法的具體用法?Python container_abcs.Sequence怎麽用?Python container_abcs.Sequence使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類torch._six.container_abcs
的用法示例。
在下文中一共展示了container_abcs.Sequence方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: collate
# 需要導入模塊: from torch._six import container_abcs [as 別名]
# 或者: from torch._six.container_abcs import Sequence [as 別名]
def collate(self, batch):
elem = batch[0]
if isinstance(elem, Data):
return Batch.from_data_list(batch, self.follow_batch)
elif isinstance(elem, torch.Tensor):
return default_collate(batch)
elif isinstance(elem, float):
return torch.tensor(batch, dtype=torch.float)
elif isinstance(elem, int_classes):
return torch.tensor(batch)
elif isinstance(elem, string_classes):
return batch
elif isinstance(elem, container_abcs.Mapping):
return {key: self.collate([d[key] for d in batch]) for key in elem}
elif isinstance(elem, tuple) and hasattr(elem, '_fields'):
return type(elem)(*(self.collate(s) for s in zip(*batch)))
elif isinstance(elem, container_abcs.Sequence):
return [self.collate(s) for s in zip(*batch)]
raise TypeError('DataLoader found invalid type: {}'.format(type(elem)))
示例2: recursive_to
# 需要導入模塊: from torch._six import container_abcs [as 別名]
# 或者: from torch._six.container_abcs import Sequence [as 別名]
def recursive_to(item, device):
# language=rst
"""
Recursively transfers everything contained in item to the target
device.
:param item: An individual tensor or container of tensors.
:param device: ``torch.device`` pointing to ``"cuda"`` or ``"cpu"``.
:return: A version of the item that has been sent to a device.
"""
if isinstance(item, torch.Tensor):
return item.to(device)
elif isinstance(item, (string_classes, int, float, bool)):
return item
elif isinstance(item, container_abcs.Mapping):
return {key: recursive_to(item[key], device) for key in item}
elif isinstance(item, tuple) and hasattr(item, "_fields"):
return type(item)(*(recursive_to(i, device) for i in item))
elif isinstance(item, container_abcs.Sequence):
return [recursive_to(i, device) for i in item]
else:
raise NotImplementedError(f"Target type {type(item)} not supported.")
示例3: concatenate_cache
# 需要導入模塊: from torch._six import container_abcs [as 別名]
# 或者: from torch._six.container_abcs import Sequence [as 別名]
def concatenate_cache(batch):
r"""Puts each data field into a tensor with outer dimension batch size"""
elem_type = type(batch[0])
if isinstance(batch[0], torch.Tensor):
out = None
return torch.cat(batch, 0, out=out) # the main difference is here
elif elem_type.__module__ == 'numpy' and elem_type.__name__ != 'str_' \
and elem_type.__name__ != 'string_':
elem = batch[0]
if elem_type.__name__ == 'ndarray':
# array of string classes and object
if np_str_obj_array_pattern.search(elem.dtype.str) is not None:
raise TypeError(error_msg_fmt.format(elem.dtype))
return concatenate_cache([torch.from_numpy(b) for b in batch])
if elem.shape == (): # scalars
py_type = float if elem.dtype.name.startswith('float') else int
return numpy_type_map[elem.dtype.name](list(map(py_type, batch)))
elif isinstance(batch[0], float):
return torch.tensor(batch, dtype=torch.float64)
elif isinstance(batch[0], int_classes):
return torch.tensor(batch)
elif isinstance(batch[0], string_classes):
return batch
elif isinstance(batch[0], container_abcs.Mapping):
return {key: concatenate_cache([d[key] for d in batch])
for key in batch[0]}
elif isinstance(batch[0], tuple) and hasattr(batch[0], '_fields'):
return type(batch[0])(*(concatenate_cache(samples)
for samples in zip(*batch)))
elif isinstance(batch[0], container_abcs.Sequence): # also some diffs here
# just unpack
return [s_ for s in batch for s_ in s]
raise TypeError((error_msg_fmt.format(type(batch[0]))))
示例4: default_collate
# 需要導入模塊: from torch._six import container_abcs [as 別名]
# 或者: from torch._six.container_abcs import Sequence [as 別名]
def default_collate(batch):
"""Puts each data field into a tensor with outer dimension batch size"""
error_msg = "batch must contain tensors, numbers, dicts or lists; found {}"
elem_type = type(batch[0])
if isinstance(batch[0], torch.Tensor):
return torch.stack(batch, 0)
elif (
elem_type.__module__ == "numpy"
and elem_type.__name__ != "str_"
and elem_type.__name__ != "string_"
): # pragma: no cover
elem = batch[0]
if elem_type.__name__ == "ndarray":
return torch.stack([torch.from_numpy(b) for b in batch], 0)
if elem.shape == (): # scalars
py_type = float if elem.dtype.name.startswith("float") else int
return numpy_type_map[elem.dtype.name](list(map(py_type, batch)))
elif isinstance(batch[0], int_classes): # pragma: no cover
return torch.LongTensor(batch)
elif isinstance(batch[0], float): # pragma: no cover
return torch.DoubleTensor(batch)
elif isinstance(batch[0], string_classes): # pragma: no cover
return batch
elif isinstance(batch[0], container_abcs.Mapping): # pragma: no cover
return {key: default_collate([d[key] for d in batch]) for key in batch[0]}
elif isinstance(batch[0], container_abcs.Sequence): # pragma: no cover
transposed = zip(*batch)
return [default_collate(samples) for samples in transposed]
raise TypeError((error_msg.format(type(batch[0]))))
示例5: time_aware_collate
# 需要導入模塊: from torch._six import container_abcs [as 別名]
# 或者: from torch._six.container_abcs import Sequence [as 別名]
def time_aware_collate(batch):
# language=rst
"""
Puts each data field into a tensor with dimensions ``[time, batch size, ...]``
Interpretation of dimensions being input:
- 0 dim (,) - (1, batch_size, 1)
- 1 dim (time,) - (time, batch_size, 1)
- >2 dim (time, n_0, ...) - (time, batch_size, n_0, ...)
"""
elem = batch[0]
elem_type = type(elem)
if isinstance(elem, torch.Tensor):
# catch 0 and 1 dimension cases and view as specified
if elem.dim() == 0:
batch = [x.view((1, 1)) for x in batch]
elif elem.dim() == 1:
batch = [x.view((x.shape[0], 1)) for x in batch]
out = None
if safe_worker_check():
# If we're in a background process, concatenate directly into a
# shared memory tensor to avoid an extra copy
numel = sum([x.numel() for x in batch])
storage = elem.storage()._new_shared(numel)
out = elem.new(storage)
return torch.stack(batch, 1, out=out)
elif (
elem_type.__module__ == "numpy"
and elem_type.__name__ != "str_"
and elem_type.__name__ != "string_"
):
elem = batch[0]
if elem_type.__name__ == "ndarray":
# array of string classes and object
if (
pytorch_collate.np_str_obj_array_pattern.search(elem.dtype.str)
is not None
):
raise TypeError(
pytorch_collate.default_collate_err_msg_format.format(elem.dtype)
)
return time_aware_collate([torch.as_tensor(b) for b in batch])
elif elem.shape == (): # scalars
return torch.as_tensor(batch)
elif isinstance(elem, float):
return torch.tensor(batch, dtype=torch.float64)
elif isinstance(elem, int_classes):
return torch.tensor(batch)
elif isinstance(elem, string_classes):
return batch
elif isinstance(elem, container_abcs.Mapping):
return {key: time_aware_collate([d[key] for d in batch]) for key in elem}
elif isinstance(elem, tuple) and hasattr(elem, "_fields"): # namedtuple
return elem_type(*(time_aware_collate(samples) for samples in zip(*batch)))
elif isinstance(elem, container_abcs.Sequence):
transposed = zip(*batch)
return [time_aware_collate(samples) for samples in transposed]
raise TypeError(pytorch_collate.default_collate_err_msg_format.format(elem_type))
示例6: _collate_else
# 需要導入模塊: from torch._six import container_abcs [as 別名]
# 或者: from torch._six.container_abcs import Sequence [as 別名]
def _collate_else(batch, collate_func):
"""
Handles recursion in the else case for these special collate functions
This is duplicates all non-tensor cases from `torch_data.dataloader.default_collate`
This also contains support for collating slices.
"""
error_msg = "batch must contain tensors, numbers, dicts or lists; found {}"
elem_type = type(batch[0])
if elem_type.__module__ == 'numpy' and elem_type.__name__ != 'str_' \
and elem_type.__name__ != 'string_':
elem = batch[0]
if elem_type.__name__ == 'ndarray':
# array of string classes and object
if re.search('[SaUO]', elem.dtype.str) is not None:
raise TypeError(error_msg.format(elem.dtype))
return torch.stack([torch.from_numpy(b) for b in batch], 0)
if elem.shape == (): # scalars
py_type = float if elem.dtype.name.startswith('float') else int
return numpy_type_map[elem.dtype.name](list(map(py_type, batch)))
elif isinstance(batch[0], slice):
batch = default_collate([{
'start': sl.start,
'stop': sl.stop,
'step': 1 if sl.step is None else sl.step
} for sl in batch])
return batch
elif isinstance(batch[0], int_classes):
return torch.LongTensor(batch)
elif isinstance(batch[0], float):
return torch.DoubleTensor(batch)
elif isinstance(batch[0], string_classes):
return batch
elif isinstance(batch[0], container_abcs.Mapping):
# Hack the mapping collation implementation to print error info
if _DEBUG:
collated = {}
try:
for key in batch[0]:
collated[key] = collate_func([d[key] for d in batch])
except Exception:
print('\n!!Error collating key = {!r}\n'.format(key))
raise
return collated
else:
return {key: collate_func([d[key] for d in batch]) for key in batch[0]}
elif isinstance(batch[0], tuple) and hasattr(batch[0], '_fields'): # namedtuple
return type(batch[0])(*(default_collate(samples) for samples in zip(*batch)))
elif isinstance(batch[0], container_abcs.Sequence):
transposed = zip(*batch)
return [collate_func(samples) for samples in transposed]
else:
raise TypeError((error_msg.format(type(batch[0]))))
示例7: move
# 需要導入模塊: from torch._six import container_abcs [as 別名]
# 或者: from torch._six.container_abcs import Sequence [as 別名]
def move(xpu, data, **kwargs):
"""
Moves the model onto the primary GPU or CPU.
If the data is nested in a container (e.g. a dict or list) then this
funciton is applied recursively to all values in the container.
Note:
This works by calling the `.to` method, which works inplace for
torch Modules, but is not implace for raw Tensors.
Args:
data (torch.Module | torch.Tensor | Collection):
raw data or a collection containing raw data.
**kwargs : forwarded to `data.cuda`
Returns:
torch.Tensor: the tensor with a dtype for this device
Example:
>>> data = torch.FloatTensor([0])
>>> if torch.cuda.is_available():
>>> xpu = XPU.coerce('gpu')
>>> assert isinstance(xpu.move(data), torch.cuda.FloatTensor)
>>> xpu = XPU.coerce('cpu')
>>> assert isinstance(xpu.move(data), torch.FloatTensor)
>>> assert isinstance(xpu.move([data])[0], torch.FloatTensor)
>>> assert isinstance(xpu.move({0: data})[0], torch.FloatTensor)
>>> assert isinstance(xpu.move({data}), set)
"""
try:
if xpu.is_gpu():
return data.to(xpu._main_device_id, **kwargs)
else:
return data.to('cpu')
except AttributeError:
# Recursive move
if isinstance(data, container_abcs.Mapping):
cls = data.__class__
return cls((k, xpu.move(v)) for k, v in data.items())
elif isinstance(data, (container_abcs.Sequence, container_abcs.Set)):
cls = data.__class__
return cls(xpu.move(v) for v in data)
else:
raise TypeError('Unknown type {}'.format(type(data)))