當前位置: 首頁>>代碼示例>>Python>>正文


Python torch.ByteTensor方法代碼示例

本文整理匯總了Python中torch.ByteTensor方法的典型用法代碼示例。如果您正苦於以下問題:Python torch.ByteTensor方法的具體用法?Python torch.ByteTensor怎麽用?Python torch.ByteTensor使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在torch的用法示例。


在下文中一共展示了torch.ByteTensor方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: to_tensor

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import ByteTensor [as 別名]
def to_tensor(pic):
    """Convert a ``numpy.ndarray`` image to tensor.

    See ``ToTensor`` for more details.

    Args:
        pic (numpy.ndarray): Image to be converted to tensor.

    Returns:
        Tensor: Converted image.
    """
    if _is_numpy_image(pic):
        if pic.ndim == 2:
            pic = cv2.cvtColor(pic, cv2.COLOR_GRAY2RGB)
        img = torch.from_numpy(pic.transpose((2, 0, 1)))
        # backward compatibility
        if isinstance(img, torch.ByteTensor):
            return img.float().div(255)
        else:
            return img
    else:
        raise TypeError('pic should be ndarray. Got {}.'.format(type(pic))) 
開發者ID:PistonY,項目名稱:torch-toolbox,代碼行數:24,代碼來源:functional.py

示例2: decode

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import ByteTensor [as 別名]
def decode(self, emissions: torch.Tensor,
               mask: Optional[torch.ByteTensor] = None) -> List[List[int]]:
        """Find the most likely tag sequence using Viterbi algorithm.

        Args:
            emissions (`~torch.Tensor`): Emission score tensor of size
                ``(seq_length, batch_size, num_tags)`` if ``batch_first`` is ``False``,
                ``(batch_size, seq_length, num_tags)`` otherwise.
            mask (`~torch.ByteTensor`): Mask tensor of size ``(seq_length, batch_size)``
                if ``batch_first`` is ``False``, ``(batch_size, seq_length)`` otherwise.

        Returns:
            List of list containing the best tag sequence for each batch.
        """
        self._validate(emissions, mask=mask)
        if mask is None:
            mask = emissions.new_ones(emissions.shape[:2], dtype=torch.uint8)

        if self.batch_first:
            emissions = emissions.transpose(0, 1)
            mask = mask.transpose(0, 1)

        return self._viterbi_decode(emissions, mask) 
開發者ID:megagonlabs,項目名稱:sato,代碼行數:25,代碼來源:__init__.py

示例3: to_tensor

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import ByteTensor [as 別名]
def to_tensor(pic):
    """Convert a ``PIL Image`` or ``numpy.ndarray`` to tensor.
    See ``ToTensor`` for more details.
    Args:
        pic (PIL Image or numpy.ndarray): Image to be converted to tensor.
    Returns:
        Tensor: Converted image.
    """
    if not(_is_numpy_image(pic)):
        raise TypeError('pic should be ndarray. Got {}'.format(type(pic)))

    # handle numpy array
    img = torch.from_numpy(pic.transpose((2, 0, 1)))
    # backward compatibility
    if isinstance(img, torch.ByteTensor) or img.dtype==torch.uint8:
        return img.float().div(255)
    else:
        return img 
開發者ID:jbohnslav,項目名稱:opencv_transforms,代碼行數:20,代碼來源:functional.py

示例4: __getitem__

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import ByteTensor [as 別名]
def __getitem__(self, item):
        if isinstance(item, torch.ByteTensor):
            if item.sum() == len(item):
                dp_uvs = self.dp_uvs
            else:
                dp_uvs = []
                for i in range(len(self.dp_uvs)):
                    if item[i]:
                        dp_uvs.append(self.dp_uvs[i])
        else:
            dp_uvs = []
            for i in range(len(item)):
                dp_uvs.append(self.dp_uvs[item[i]])

        uv = DenseposeUVs(dp_uvs, self.size, self.flip)

        return uv 
開發者ID:soeaver,項目名稱:Parsing-R-CNN,代碼行數:19,代碼來源:densepose_uv.py

示例5: fit_positive

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import ByteTensor [as 別名]
def fit_positive(rows, cols, yx_min, yx_max, anchors):
    device_id = anchors.get_device() if torch.cuda.is_available() else None
    batch_size, num, _ = yx_min.size()
    num_anchors, _ = anchors.size()
    valid = torch.prod(yx_min < yx_max, -1)
    center = (yx_min + yx_max) / 2
    ij = torch.floor(center)
    i, j = torch.unbind(ij.long(), -1)
    index = i * cols + j
    anchors2 = anchors / 2
    iou_matrix = utils.iou.torch.iou_matrix((yx_min - center).view(-1, 2), (yx_max - center).view(-1, 2), -anchors2, anchors2).view(batch_size, -1, num_anchors)
    iou, index_anchor = iou_matrix.max(-1)
    _positive = []
    cells = rows * cols
    for valid, index, index_anchor in zip(torch.unbind(valid), torch.unbind(index), torch.unbind(index_anchor)):
        index, index_anchor = (t[valid] for t in (index, index_anchor))
        t = utils.ensure_device(torch.ByteTensor(cells, num_anchors).zero_(), device_id)
        t[index, index_anchor] = 1
        _positive.append(t)
    return torch.stack(_positive) 
開發者ID:ruiminshen,項目名稱:yolo2-pytorch,代碼行數:22,代碼來源:__init__.py

示例6: __call__

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import ByteTensor [as 別名]
def __call__(self, gray_image):
        size = gray_image.size()
        #print(size)
        color_image = torch.ByteTensor(3, size[1], size[2]).fill_(0)
        #color_image = torch.ByteTensor(3, size[0], size[1]).fill_(0)

        #for label in range(1, len(self.cmap)):
        for label in range(0, len(self.cmap)):
            mask = gray_image[0] == label
            #mask = gray_image == label

            color_image[0][mask] = self.cmap[label][0]
            color_image[1][mask] = self.cmap[label][1]
            color_image[2][mask] = self.cmap[label][2]

        return color_image 
開發者ID:clovaai,項目名稱:ext_portrait_segmentation,代碼行數:18,代碼來源:help_function.py

示例7: to_tensor

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import ByteTensor [as 別名]
def to_tensor(pic):
    """Convert a ``PIL Image`` or ``numpy.ndarray`` to tensor.
    See ``ToTensor`` for more details.
    Args:
        pic (PIL Image or numpy.ndarray): Image to be converted to tensor.
    Returns:
        Tensor: Converted image.
    """
    if not(_is_numpy_image(pic)):
        raise TypeError('pic should be ndarray. Got {}'.format(type(pic)))

    # handle numpy array
    img = torch.from_numpy(pic.transpose((2, 0, 1)))
    # backward compatibility
    if isinstance(img, torch.ByteTensor) or img.dtype==torch.uint8:
        return img.float()
    else:
        return img 
開發者ID:CMU-CREATE-Lab,項目名稱:deep-smoke-machine,代碼行數:20,代碼來源:opencv_functional.py

示例8: decode

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import ByteTensor [as 別名]
def decode(self, emissions):
        B, T, N = emissions.size()
        hypos = []
        if self.asg_transitions is None:
            transitions = torch.FloatTensor(N, N).zero_()
        else:
            transitions = torch.FloatTensor(self.asg_transitions).view(N, N)
        viterbi_path = torch.IntTensor(B, T)
        workspace = torch.ByteTensor(CpuViterbiPath.get_workspace_size(B, T, N))
        CpuViterbiPath.compute(
            B,
            T,
            N,
            get_data_ptr_as_bytes(emissions),
            get_data_ptr_as_bytes(transitions),
            get_data_ptr_as_bytes(viterbi_path),
            get_data_ptr_as_bytes(workspace),
        )
        return [
            [{"tokens": self.get_tokens(viterbi_path[b].tolist()), "score": 0}]
            for b in range(B)
        ] 
開發者ID:pytorch,項目名稱:fairseq,代碼行數:24,代碼來源:w2l_decoder.py

示例9: _get_whole_word_mask

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import ByteTensor [as 別名]
def _get_whole_word_mask(self):
        # create masked input and targets
        if self.args.mask_whole_words:
            bpe = encoders.build_bpe(self.args)
            if bpe is not None:

                def is_beginning_of_word(i):
                    if i < self.source_dictionary.nspecial:
                        # special elements are always considered beginnings
                        return True
                    tok = self.source_dictionary[i]
                    if tok.startswith('madeupword'):
                        return True
                    try:
                        return bpe.is_beginning_of_word(tok)
                    except ValueError:
                        return True

                mask_whole_words = torch.ByteTensor(list(
                    map(is_beginning_of_word, range(len(self.source_dictionary)))
                ))
        else:
            mask_whole_words = None
        return mask_whole_words 
開發者ID:pytorch,項目名稱:fairseq,代碼行數:26,代碼來源:multilingual_masked_lm.py

示例10: forward

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import ByteTensor [as 別名]
def forward(self, emissions, targets, masks, beam=None):
        """
        Compute the conditional log-likelihood of a sequence of target tokens given emission scores

        Args:
            emissions (`~torch.Tensor`): Emission score are usually the unnormalized decoder output
                ``(batch_size, seq_len, vocab_size)``. We assume batch-first
            targets (`~torch.LongTensor`): Sequence of target token indices
                ``(batch_size, seq_len)
            masks (`~torch.ByteTensor`): Mask tensor with the same size as targets

        Returns:
            `~torch.Tensor`: approximated log-likelihood
        """
        numerator = self._compute_score(emissions, targets, masks)
        denominator = self._compute_normalizer(emissions, targets, masks, beam)
        return numerator - denominator 
開發者ID:pytorch,項目名稱:fairseq,代碼行數:19,代碼來源:dynamic_crf_layer.py

示例11: get_whole_word_mask

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import ByteTensor [as 別名]
def get_whole_word_mask(args, dictionary):
    bpe = encoders.build_bpe(args)
    if bpe is not None:
        def is_beginning_of_word(i):
            if i < dictionary.nspecial:
                # special elements are always considered beginnings
                return True
            tok = dictionary[i]
            if tok.startswith('madeupword'):
                return True
            try:
                return bpe.is_beginning_of_word(tok)
            except ValueError:
                return True
        mask_whole_words = torch.ByteTensor(list(
            map(is_beginning_of_word, range(len(dictionary)))
        ))
        return mask_whole_words
    return None 
開發者ID:pytorch,項目名稱:fairseq,代碼行數:21,代碼來源:utils.py

示例12: forward

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import ByteTensor [as 別名]
def forward(self, x, lengths):
        """
        :param x: The input of size BxCxDxT
        :param lengths: The actual length of each sequence in the batch
        :return: Masked output from the module
        """
        for module in self.seq_module:
            x = module(x)
            mask = torch.ByteTensor(x.size()).fill_(0)
            if x.is_cuda:
                mask = mask.cuda()
            for i, length in enumerate(lengths):
                length = length.item()
                if (mask[i].size(2) - length) > 0:
                    mask[i].narrow(2, length, mask[i].size(2) - length).fill_(1)
            x = x.masked_fill(mask, 0)
        return x, lengths 
開發者ID:joseph-zhong,項目名稱:LipReading,代碼行數:19,代碼來源:model.py

示例13: test_masked_global_attention

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import ByteTensor [as 別名]
def test_masked_global_attention(self):

        source_lengths = torch.IntTensor([7, 3, 5, 2])
        # illegal_weights_mask = torch.ByteTensor([
        #     [0, 0, 0, 0, 0, 0, 0],
        #     [0, 0, 0, 1, 1, 1, 1],
        #     [0, 0, 0, 0, 0, 1, 1],
        #     [0, 0, 1, 1, 1, 1, 1]])

        batch_size = source_lengths.size(0)
        dim = 20

        memory_bank = Variable(torch.randn(batch_size,
                                           source_lengths.max(), dim))
        hidden = Variable(torch.randn(batch_size, dim))

        attn = onmt.modules.GlobalAttention(dim)

        _, alignments = attn(hidden, memory_bank,
                             memory_lengths=source_lengths)
        # TODO: fix for pytorch 0.3
        # illegal_weights = alignments.masked_select(illegal_weights_mask)

        # self.assertEqual(0.0, illegal_weights.data.sum()) 
開發者ID:lizekang,項目名稱:ITDD,代碼行數:26,代碼來源:test_attention.py

示例14: broadcast_object

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import ByteTensor [as 別名]
def broadcast_object(obj: Any) -> Any:
    if is_master():
        buffer = io.BytesIO()
        torch.save(obj, buffer)
        data = bytearray(buffer.getbuffer())
        length_tensor = torch.LongTensor([len(data)])
        length_tensor = broadcast(length_tensor)
        data_tensor = torch.ByteTensor(data)
        data_tensor = broadcast(data_tensor)
    else:
        length_tensor = torch.LongTensor([0])
        length_tensor = broadcast(length_tensor)
        data_tensor = torch.empty([length_tensor.item()], dtype=torch.uint8)
        data_tensor = broadcast(data_tensor)
        buffer = io.BytesIO(data_tensor.numpy())
        obj = torch.load(buffer)
    return obj 
開發者ID:facebookresearch,項目名稱:ClassyVision,代碼行數:19,代碼來源:distributed_util.py

示例15: forward

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import ByteTensor [as 別名]
def forward(self, feats, tags, mask):
        r"""
        用於計算CRF的前向loss,返回值為一個batch_size的FloatTensor,可能需要mean()求得loss。

        :param torch.FloatTensor feats: batch_size x max_len x num_tags,特征矩陣。
        :param torch.LongTensor tags: batch_size x max_len,標簽矩陣。
        :param torch.ByteTensor mask: batch_size x max_len,為0的位置認為是padding。
        :return: torch.FloatTensor, (batch_size,)
        """
        feats = feats.transpose(0, 1)
        tags = tags.transpose(0, 1).long()
        mask = mask.transpose(0, 1).float()
        all_path_score = self._normalizer_likelihood(feats, mask)
        gold_path_score = self._gold_score(feats, tags, mask)

        return all_path_score - gold_path_score 
開發者ID:fastnlp,項目名稱:fastNLP,代碼行數:18,代碼來源:crf.py


注:本文中的torch.ByteTensor方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。