當前位置: 首頁>>代碼示例>>Python>>正文


Python torch.BoolTensor方法代碼示例

本文整理匯總了Python中torch.BoolTensor方法的典型用法代碼示例。如果您正苦於以下問題:Python torch.BoolTensor方法的具體用法?Python torch.BoolTensor怎麽用?Python torch.BoolTensor使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在torch的用法示例。


在下文中一共展示了torch.BoolTensor方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: forward

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import BoolTensor [as 別名]
def forward(self, inputs: torch.Tensor, mask: torch.BoolTensor = None) -> torch.Tensor:
        """
        # Parameters

        inputs : `torch.Tensor`, required.
            A tensor of shape (batch_size, timesteps, input_dim)
        mask : `torch.BoolTensor`, optional (default = `None`).
            A tensor of shape (batch_size, timesteps).

        # Returns

        A tensor of shape (batch_size, timesteps, output_dim).
        """
        if mask is None:
            return self._feedforward(inputs)
        else:
            outputs = self._feedforward(inputs)
            return outputs * mask.unsqueeze(dim=-1) 
開發者ID:allenai,項目名稱:allennlp,代碼行數:20,代碼來源:feedforward_encoder.py

示例2: load_reddit

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import BoolTensor [as 別名]
def load_reddit():
    from dgl.data import RedditDataset

    # load reddit data
    data = RedditDataset(self_loop=True)
    train_mask = data.train_mask
    val_mask = data.val_mask
    features = th.Tensor(data.features)
    labels = th.LongTensor(data.labels)

    # Construct graph
    g = data.graph
    g.ndata['features'] = features
    g.ndata['labels'] = labels
    g.ndata['train_mask'] = th.BoolTensor(data.train_mask)
    g.ndata['val_mask'] = th.BoolTensor(data.val_mask)
    g.ndata['test_mask'] = th.BoolTensor(data.test_mask)
    return g, data.num_labels 
開發者ID:dmlc,項目名稱:dgl,代碼行數:20,代碼來源:load_graph.py

示例3: forward

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import BoolTensor [as 別名]
def forward(self, inputs: torch.Tensor, mask: torch.BoolTensor):
        output = inputs
        if self._sinusoidal_positional_encoding:
            output = add_positional_features(output)
        if self._positional_embedding is not None:
            position_ids = torch.arange(inputs.size(1), dtype=torch.long, device=output.device)
            position_ids = position_ids.unsqueeze(0).expand(inputs.shape[:-1])
            output = output + self._positional_embedding(position_ids)

        # For some reason the torch transformer expects the shape (sequence, batch, features), not the more
        # familiar (batch, sequence, features), so we have to fix it.
        output = output.permute(1, 0, 2)
        # For some other reason, the torch transformer takes the mask backwards.
        mask = ~mask
        output = self._transformer(output, src_key_padding_mask=mask)
        output = output.permute(1, 0, 2)

        return output 
開發者ID:allenai,項目名稱:allennlp,代碼行數:20,代碼來源:pytorch_transformer_wrapper.py

示例4: forward

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import BoolTensor [as 別名]
def forward(self, inputs: torch.Tensor, mask: torch.BoolTensor = None) -> torch.Tensor:
        """
        # Parameters

        inputs : `torch.Tensor`, required.
            A tensor of shape (batch_size, timesteps, input_dim)
        mask : `torch.BoolTensor`, optional (default = `None`).
            A tensor of shape (batch_size, timesteps).

        # Returns

        A tensor of shape (batch_size, timesteps, output_dim),
        where output_dim = input_dim.
        """
        if mask is None:
            return inputs
        else:
            # We should mask out the output instead of the input.
            # But here, output = input, so we directly mask out the input.
            return inputs * mask.unsqueeze(dim=-1) 
開發者ID:allenai,項目名稱:allennlp,代碼行數:22,代碼來源:pass_through_encoder.py

示例5: forward

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import BoolTensor [as 別名]
def forward(self, tokens: torch.Tensor, mask: torch.BoolTensor = None):
        if mask is not None:
            tokens = tokens * mask.unsqueeze(-1)

        # Our input has shape `(batch_size, num_tokens, embedding_dim)`, so we sum out the `num_tokens`
        # dimension.
        summed = tokens.sum(1)

        if self._averaged:
            if mask is not None:
                lengths = get_lengths_from_binary_sequence_mask(mask)
                length_mask = lengths > 0

                # Set any length 0 to 1, to avoid dividing by zero.
                lengths = torch.max(lengths, lengths.new_ones(1))
            else:
                lengths = tokens.new_full((1,), fill_value=tokens.size(1))
                length_mask = None

            summed = summed / lengths.unsqueeze(-1).float()

            if length_mask is not None:
                summed = summed * (length_mask > 0).unsqueeze(-1)

        return summed 
開發者ID:allenai,項目名稱:allennlp,代碼行數:27,代碼來源:boe_encoder.py

示例6: as_padded_tensor_dict

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import BoolTensor [as 別名]
def as_padded_tensor_dict(
        self, tokens: IndexedTokenList, padding_lengths: Dict[str, int]
    ) -> Dict[str, torch.Tensor]:
        """
        This method pads a list of tokens given the input padding lengths (which could actually
        truncate things, depending on settings) and returns that padded list of input tokens as a
        `Dict[str, torch.Tensor]`.  This is a dictionary because there should be one key per
        argument that the `TokenEmbedder` corresponding to this class expects in its `forward()`
        method (where the argument name in the `TokenEmbedder` needs to make the key in this
        dictionary).

        The base class implements the case when all you want to do is create a padded `LongTensor`
        for every list in the `tokens` dictionary.  If your `TokenIndexer` needs more complex
        logic than that, you need to override this method.
        """
        tensor_dict = {}
        for key, val in tokens.items():
            if val and isinstance(val[0], bool):
                tensor = torch.BoolTensor(
                    pad_sequence_to_length(val, padding_lengths[key], default_value=lambda: False)
                )
            else:
                tensor = torch.LongTensor(pad_sequence_to_length(val, padding_lengths[key]))
            tensor_dict[key] = tensor
        return tensor_dict 
開發者ID:allenai,項目名稱:allennlp,代碼行數:27,代碼來源:token_indexer.py

示例7: get_lengths_from_binary_sequence_mask

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import BoolTensor [as 別名]
def get_lengths_from_binary_sequence_mask(mask: torch.BoolTensor) -> torch.LongTensor:
    """
    Compute sequence lengths for each batch element in a tensor using a
    binary mask.

    # Parameters

    mask : `torch.BoolTensor`, required.
        A 2D binary mask of shape (batch_size, sequence_length) to
        calculate the per-batch sequence lengths from.

    # Returns

    `torch.LongTensor`
        A torch.LongTensor of shape (batch_size,) representing the lengths
        of the sequences in the batch.
    """
    return mask.sum(-1) 
開發者ID:allenai,項目名稱:allennlp,代碼行數:20,代碼來源:util.py

示例8: get_mask_from_sequence_lengths

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import BoolTensor [as 別名]
def get_mask_from_sequence_lengths(
    sequence_lengths: torch.Tensor, max_length: int
) -> torch.BoolTensor:
    """
    Given a variable of shape `(batch_size,)` that represents the sequence lengths of each batch
    element, this function returns a `(batch_size, max_length)` mask variable.  For example, if
    our input was `[2, 2, 3]`, with a `max_length` of 4, we'd return
    `[[1, 1, 0, 0], [1, 1, 0, 0], [1, 1, 1, 0]]`.

    We require `max_length` here instead of just computing it from the input `sequence_lengths`
    because it lets us avoid finding the max, then copying that value from the GPU to the CPU so
    that we can use it to construct a new tensor.
    """
    # (batch_size, max_length)
    ones = sequence_lengths.new_ones(sequence_lengths.size(0), max_length)
    range_tensor = ones.cumsum(dim=1)
    return sequence_lengths.unsqueeze(1) >= range_tensor 
開發者ID:allenai,項目名稱:allennlp,代碼行數:19,代碼來源:util.py

示例9: masked_max

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import BoolTensor [as 別名]
def masked_max(
    vector: torch.Tensor, mask: torch.BoolTensor, dim: int, keepdim: bool = False,
) -> torch.Tensor:
    """
    To calculate max along certain dimensions on masked values

    # Parameters

    vector : `torch.Tensor`
        The vector to calculate max, assume unmasked parts are already zeros
    mask : `torch.BoolTensor`
        The mask of the vector. It must be broadcastable with vector.
    dim : `int`
        The dimension to calculate max
    keepdim : `bool`
        Whether to keep dimension

    # Returns

    `torch.Tensor`
        A `torch.Tensor` of including the maximum values.
    """
    replaced_vector = vector.masked_fill(~mask, min_value_of_dtype(vector.dtype))
    max_value, _ = replaced_vector.max(dim=dim, keepdim=keepdim)
    return max_value 
開發者ID:allenai,項目名稱:allennlp,代碼行數:27,代碼來源:util.py

示例10: replace_masked_values

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import BoolTensor [as 別名]
def replace_masked_values(
    tensor: torch.Tensor, mask: torch.BoolTensor, replace_with: float
) -> torch.Tensor:
    """
    Replaces all masked values in `tensor` with `replace_with`.  `mask` must be broadcastable
    to the same shape as `tensor`. We require that `tensor.dim() == mask.dim()`, as otherwise we
    won't know which dimensions of the mask to unsqueeze.

    This just does `tensor.masked_fill()`, except the pytorch method fills in things with a mask
    value of 1, where we want the opposite.  You can do this in your own code with
    `tensor.masked_fill(~mask, replace_with)`.
    """
    if tensor.dim() != mask.dim():
        raise ConfigurationError(
            "tensor.dim() (%d) != mask.dim() (%d)" % (tensor.dim(), mask.dim())
        )
    return tensor.masked_fill(~mask, replace_with) 
開發者ID:allenai,項目名稱:allennlp,代碼行數:19,代碼來源:util.py

示例11: __call__

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import BoolTensor [as 別名]
def __call__(
        self,
        predictions: torch.Tensor,
        gold_labels: torch.Tensor,
        mask: Optional[torch.BoolTensor] = None,
    ):
        """
        # Parameters

        predictions : `torch.Tensor`, required.
            A tensor of predictions of shape (batch_size, ...).
        gold_labels : `torch.Tensor`, required.
            A tensor of the same shape as `predictions`.
        mask : `torch.BoolTensor`, optional (default = `None`).
            A tensor of the same shape as `predictions`.
        """
        predictions, gold_labels, mask = self.detach_tensors(predictions, gold_labels, mask)
        self._predictions_labels_covariance(predictions, gold_labels, mask)
        self._predictions_variance(predictions, predictions, mask)
        self._labels_variance(gold_labels, gold_labels, mask) 
開發者ID:allenai,項目名稱:allennlp,代碼行數:22,代碼來源:pearson_correlation.py

示例12: __call__

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import BoolTensor [as 別名]
def __call__(
        self,  # type: ignore
        logits: torch.Tensor,
        mask: Optional[torch.BoolTensor] = None,
    ):
        """
        # Parameters

        logits : `torch.Tensor`, required.
            A tensor of unnormalized log probabilities of shape (batch_size, ..., num_classes).
        mask : `torch.BoolTensor`, optional (default = `None`).
            A masking tensor of shape (batch_size, ...).
        """
        logits, mask = self.detach_tensors(logits, mask)

        if mask is None:
            mask = torch.ones(logits.size()[:-1], device=logits.device).bool()

        log_probs = torch.nn.functional.log_softmax(logits, dim=-1)
        probabilities = torch.exp(log_probs) * mask.unsqueeze(-1)
        weighted_negative_likelihood = -log_probs * probabilities
        entropy = weighted_negative_likelihood.sum(-1)

        self._entropy += entropy.sum() / mask.sum()
        self._count += 1 
開發者ID:allenai,項目名稱:allennlp,代碼行數:27,代碼來源:entropy.py

示例13: __call__

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import BoolTensor [as 別名]
def __call__(
        self,
        predictions: torch.Tensor,
        gold_labels: torch.Tensor,
        mask: Optional[torch.BoolTensor] = None,
    ):
        """
        # Parameters

        predictions : `torch.Tensor`, required.
            A tensor of predictions of shape (batch_size, ...).
        gold_labels : `torch.Tensor`, required.
            A tensor of the same shape as `predictions`.
        mask : `torch.BoolTensor`, optional (default = `None`).
            A tensor of the same shape as `predictions`.
        """
        predictions, gold_labels, mask = self.detach_tensors(predictions, gold_labels, mask)

        absolute_errors = torch.abs(predictions - gold_labels)
        if mask is not None:
            absolute_errors *= mask
            self._total_count += torch.sum(mask)
        else:
            self._total_count += gold_labels.numel()
        self._absolute_error += torch.sum(absolute_errors) 
開發者ID:allenai,項目名稱:allennlp,代碼行數:27,代碼來源:mean_absolute_error.py

示例14: forward_layers

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import BoolTensor [as 別名]
def forward_layers(
        self, tensor: torch.Tensor, mask: torch.BoolTensor
    ) -> torch.Tensor:
        """
        Apply transformer layers to input.

        :param tensor:
            embedded input
        :param mask:
            mask of input

        :return tensor:
            return embedding after applying transformer layers
        """
        if getattr(self.layers, 'is_model_parallel', False):
            # factored out for readability. It is equivalent to the other
            # condition
            tensor = self._apply_model_parallel(tensor, mask)
        else:
            for i in range(self.n_layers):
                tensor = self.layers[i](tensor, mask)

        return tensor 
開發者ID:facebookresearch,項目名稱:ParlAI,代碼行數:25,代碼來源:modules.py

示例15: forward

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import BoolTensor [as 別名]
def forward(self, inputs, seq_lengths):
        output = None

        for module in self.sequential:
            output = module(inputs)
            mask = torch.BoolTensor(output.size()).fill_(0)

            if output.is_cuda:
                mask = mask.cuda()

            seq_lengths = self.get_seq_lengths(module, seq_lengths)

            for idx, length in enumerate(seq_lengths):
                length = length.item()

                if (mask[idx].size(2) - length) > 0:
                    mask[idx].narrow(dim=2, start=length, length=mask[idx].size(2) - length).fill_(1)

            output = output.masked_fill(mask, 0)
            inputs = output

        return output, seq_lengths 
開發者ID:sooftware,項目名稱:KoSpeech,代碼行數:24,代碼來源:conv.py


注:本文中的torch.BoolTensor方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。