當前位置: 首頁>>代碼示例>>Python>>正文


Python toolz.groupby方法代碼示例

本文整理匯總了Python中toolz.groupby方法的典型用法代碼示例。如果您正苦於以下問題:Python toolz.groupby方法的具體用法?Python toolz.groupby怎麽用?Python toolz.groupby使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在toolz的用法示例。


在下文中一共展示了toolz.groupby方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: is_valid_connection_candidate

# 需要導入模塊: import toolz [as 別名]
# 或者: from toolz import groupby [as 別名]
def is_valid_connection_candidate(self, candidate: Node) -> bool:
        # connect to no more then 2 nodes with the same IP
        nodes_by_ip = groupby(
            operator.attrgetter("remote.address.ip"), self.connected_nodes.values()
        )
        matching_ip_nodes = nodes_by_ip.get(candidate.address.ip, [])
        return len(matching_ip_nodes) <= 2 
開發者ID:QuarkChain,項目名稱:pyquarkchain,代碼行數:9,代碼來源:peer.py

示例2: __init__

# 需要導入模塊: import toolz [as 別名]
# 或者: from toolz import groupby [as 別名]
def __init__(self, restrictions):
        # A dict mapping each asset to its restrictions, which are sorted by
        # ascending order of effective_date
        self._restrictions_by_asset = {
            asset: sorted(
                restrictions_for_asset, key=lambda x: x.effective_date
            )
            for asset, restrictions_for_asset
            in iteritems(groupby(lambda x: x.asset, restrictions))
        } 
開發者ID:alpacahq,項目名稱:pylivetrader,代碼行數:12,代碼來源:asset_restrictions.py

示例3: _get_subnet_config_w_cidr

# 需要導入模塊: import toolz [as 別名]
# 或者: from toolz import groupby [as 別名]
def _get_subnet_config_w_cidr(self, network_config):
        network_cidr_base = str(network_config.get('network_cidr_base', '172.16.0.0'))
        network_cidr_size = str(network_config.get('network_cidr_size', '20'))
        first_network_address_block = str(network_config.get('first_network_address_block', network_cidr_base))

        ret_val = {}
        base_cidr = network_cidr_base + '/' + network_cidr_size
        net = netaddr.IPNetwork(base_cidr)

        grouped_subnet = groupby('size', self._get_subnet_config_w_az(network_config))
        subnet_groups = sorted(grouped_subnet.items())
        available_cidrs = []

        for subnet_size, subnet_configs in subnet_groups:
            newcidrs = net.subnet(int(subnet_size))

            for subnet_config in subnet_configs:
                try:
                    cidr = newcidrs.next()
                except StopIteration as e:
                    net = chain(*reversed(available_cidrs)).next()
                    newcidrs = net.subnet(int(subnet_size))
                    cidr = newcidrs.next()

                new_config = assoc(subnet_config, 'cidr', str(cidr))
                yield new_config
            else:
                net = newcidrs.next()
                available_cidrs.append(newcidrs) 
開發者ID:DualSpark,項目名稱:cloudformation-environmentbase,代碼行數:31,代碼來源:base_network.py

示例4: get_zeroth_quarter_idx

# 需要導入模塊: import toolz [as 別名]
# 或者: from toolz import groupby [as 別名]
def get_zeroth_quarter_idx(self, stacked_last_per_qtr):
        """
        Filters for releases that are on or after each simulation date and
        determines the next quarter by picking out the upcoming release for
        each date in the index.

        Parameters
        ----------
        stacked_last_per_qtr : pd.DataFrame
            A DataFrame with index of calendar dates, sid, and normalized
            quarters with each row being the latest estimate for the row's
            index values, sorted by event date.

        Returns
        -------
        next_releases_per_date_index : pd.MultiIndex
            An index of calendar dates, sid, and normalized quarters, for only
            the rows that have a next event.
        """
        next_releases_per_date = stacked_last_per_qtr.loc[
            stacked_last_per_qtr[EVENT_DATE_FIELD_NAME] >=
            stacked_last_per_qtr.index.get_level_values(SIMULATION_DATES)
        ].groupby(
            level=[SIMULATION_DATES, SID_FIELD_NAME],
            as_index=False,
            # Here we take advantage of the fact that `stacked_last_per_qtr` is
            # sorted by event date.
        ).nth(0)
        return next_releases_per_date.index 
開發者ID:enigmampc,項目名稱:catalyst,代碼行數:31,代碼來源:earnings_estimates.py

示例5: split_next_and_previous_event_columns

# 需要導入模塊: import toolz [as 別名]
# 或者: from toolz import groupby [as 別名]
def split_next_and_previous_event_columns(self, requested_columns):
        """
        Split requested columns into columns that should load the next known
        value and columns that should load the previous known value.

        Parameters
        ----------
        requested_columns : iterable[BoundColumn]

        Returns
        -------
        next_cols, previous_cols : iterable[BoundColumn], iterable[BoundColumn]
            ``requested_columns``, partitioned into sub-sequences based on
            whether the column should produce values from the next event or the
            previous event
        """
        def next_or_previous(c):
            if c in self.next_value_columns:
                return 'next'
            elif c in self.previous_value_columns:
                return 'previous'

            raise ValueError(
                "{c} not found in next_value_columns "
                "or previous_value_columns".format(c=c)
            )
        groups = groupby(next_or_previous, requested_columns)
        return groups.get('next', ()), groups.get('previous', ()) 
開發者ID:enigmampc,項目名稱:catalyst,代碼行數:30,代碼來源:events.py

示例6: group_by

# 需要導入模塊: import toolz [as 別名]
# 或者: from toolz import groupby [as 別名]
def group_by(key: Func, seq: Seq) -> dict:
    """
    Group collection by the results of a key function.

    Examples:
        >>> sk.group_by((X % 2), range(5))
        {0: [0, 2, 4], 1: [1, 3]}

    See Also:
        :func:`reduce_by`
        :func:`fold_by`
    """
    return groupby(key, seq) 
開發者ID:fabiommendes,項目名稱:sidekick,代碼行數:15,代碼來源:lib_grouping.py

示例7: get_adjustments

# 需要導入模塊: import toolz [as 別名]
# 或者: from toolz import groupby [as 別名]
def get_adjustments(self,
                        zero_qtr_data,
                        requested_qtr_data,
                        last_per_qtr,
                        dates,
                        assets,
                        columns,
                        **kwargs):
        """
        Creates an AdjustedArray from the given estimates data for the given
        dates.

        Parameters
        ----------
        zero_qtr_data : pd.DataFrame
            The 'time zero' data for each calendar date per sid.
        requested_qtr_data : pd.DataFrame
            The requested quarter data for each calendar date per sid.
        last_per_qtr : pd.DataFrame
            A DataFrame with a column MultiIndex of [self.estimates.columns,
            normalized_quarters, sid] that allows easily getting the timeline
            of estimates for a particular sid for a particular quarter.
        dates : pd.DatetimeIndex
            The calendar dates for which estimates data is requested.
        assets : pd.Int64Index
            An index of all the assets from the raw data.
        columns : list of BoundColumn
            The columns for which adjustments need to be calculated.
        kwargs :
            Additional keyword arguments that should be forwarded to
            `get_adjustments_for_sid` and to be used in computing adjustments
            for each sid.

        Returns
        -------
        col_to_all_adjustments : dict[int -> AdjustedArray]
            A dictionary of all adjustments that should be applied.
        """

        zero_qtr_data.sort_index(inplace=True)
        # Here we want to get the LAST record from each group of records
        # corresponding to a single quarter. This is to ensure that we select
        # the most up-to-date event date in case the event date changes.
        quarter_shifts = zero_qtr_data.groupby(
            level=[SID_FIELD_NAME, NORMALIZED_QUARTERS]
        ).nth(-1)

        col_to_all_adjustments = {}
        sid_to_idx = dict(zip(assets, range(len(assets))))
        quarter_shifts.groupby(level=SID_FIELD_NAME).apply(
            self.get_adjustments_for_sid,
            dates,
            requested_qtr_data,
            last_per_qtr,
            sid_to_idx,
            columns,
            col_to_all_adjustments,
            **kwargs
        )
        return col_to_all_adjustments 
開發者ID:enigmampc,項目名稱:catalyst,代碼行數:62,代碼來源:earnings_estimates.py


注:本文中的toolz.groupby方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。