本文整理匯總了Python中toolz.first方法的典型用法代碼示例。如果您正苦於以下問題:Python toolz.first方法的具體用法?Python toolz.first怎麽用?Python toolz.first使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類toolz
的用法示例。
在下文中一共展示了toolz.first方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _write_df_to_table
# 需要導入模塊: import toolz [as 別名]
# 或者: from toolz import first [as 別名]
def _write_df_to_table(
self,
tbl,
df,
txn,
chunk_size,
idx=True,
idx_label=None,
):
df.to_sql(
tbl.name,
txn.connection,
index=idx,
index_label=(
idx_label
if idx_label is not None else
first(tbl.primary_key.columns).name
),
if_exists='append',
chunksize=chunk_size,
)
示例2: first_repeated
# 需要導入模塊: import toolz [as 別名]
# 或者: from toolz import first [as 別名]
def first_repeated(key: Func, seq: Seq):
"""
Return the index and value of first repeated element in sequence.
Raises a ValueError if no repeated element is found.
Examples:
>>> first_repeated(None, [1, 2, 3, 1])
(3, 1)
"""
key = to_callable(key)
seen = set()
add = seen.add
for i, x in enumerate(seq):
tag = key(x)
if tag in seen:
return i, x
add(tag)
raise ValueError("no repeated element in sequence")
示例3: peek
# 需要導入模塊: import toolz [as 別名]
# 或者: from toolz import first [as 別名]
def peek(seq: Seq, default=NOT_GIVEN) -> (object, Seq):
"""
Same as peek_with(first).
Peek first element of sequence and return (first, seq).
>>> fst, seq = peek(range(5))
>>> fst, list(seq)
(0, [0, 1, 2, 3, 4])
"""
try:
x, seq = uncons(seq)
except ValueError:
if default is NOT_GIVEN:
raise
return default, iter(())
return x, toolz.cons(x, seq)
示例4: detect_fastq_annotations
# 需要導入模塊: import toolz [as 別名]
# 或者: from toolz import first [as 別名]
def detect_fastq_annotations(fastq_file):
"""
detects annotations preesent in a FASTQ file by examining the first read
"""
annotations = set()
queryread = tz.first(read_fastq(fastq_file))
for k, v in BARCODEINFO.items():
if v.readprefix in queryread:
annotations.add(k)
return annotations
示例5: subset_bamfile
# 需要導入模塊: import toolz [as 別名]
# 或者: from toolz import first [as 別名]
def subset_bamfile(sam, barcodes):
"""
Subset a SAM/BAM file, keeping only alignments from given
cellular barcodes
"""
from pysam import AlignmentFile
start_time = time.time()
sam_file = open_bamfile(sam)
out_file = AlignmentFile("-", "wh", template=sam_file)
track = sam_file.fetch(until_eof=True)
# peek at first alignment to determine the annotations
queryalignment = track.next()
annotations = detect_alignment_annotations(queryalignment)
track = itertools.chain([queryalignment], track)
re_string = construct_transformed_regex(annotations)
parser_re = re.compile(re_string)
barcodes = set(barcode.strip() for barcode in barcodes)
for count, aln in enumerate(track, start=1):
if count and not count % 1000000:
logger.info("Processed %d alignments." % count)
match = parser_re.match(aln.qname)
tags = aln.tags
if "cellular" in annotations:
cb = match.group('CB')
if cb in barcodes:
out_file.write(aln)
示例6: create_table
# 需要導入模塊: import toolz [as 別名]
# 或者: from toolz import first [as 別名]
def create_table(self, table_name, obj=None, schema=None):
"""Create a table."""
if obj is None and schema is None:
raise com.IbisError('Must pass expr or schema')
if obj is not None:
df = pd.DataFrame(obj)
else:
dtypes = ibis_schema_to_pandas(schema)
df = schema.apply_to(
pd.DataFrame(columns=list(map(toolz.first, dtypes)))
)
self.dictionary[table_name] = df
示例7: remap_overlapping_column_names
# 需要導入模塊: import toolz [as 別名]
# 或者: from toolz import first [as 別名]
def remap_overlapping_column_names(table_op, root_table, data_columns):
"""Return an ``OrderedDict`` mapping possibly suffixed column names to
column names without suffixes.
Parameters
----------
table_op : TableNode
The ``TableNode`` we're selecting from.
root_table : TableNode
The root table of the expression we're selecting from.
data_columns : set or frozenset
The available columns to select from
Returns
-------
mapping : OrderedDict[str, str]
A map from possibly-suffixed column names to column names without
suffixes.
"""
if not isinstance(table_op, ops.Join):
return None
left_root, right_root = ops.distinct_roots(table_op.left, table_op.right)
suffixes = {
left_root: constants.LEFT_JOIN_SUFFIX,
right_root: constants.RIGHT_JOIN_SUFFIX,
}
column_names = [
({name, name + suffixes[root_table]} & data_columns, name)
for name in root_table.schema.names
]
mapping = OrderedDict(
(first(col_name), final_name)
for col_name, final_name in column_names
if col_name
)
return mapping
示例8: haystack_to_series_of_lists
# 需要導入模塊: import toolz [as 別名]
# 或者: from toolz import first [as 別名]
def haystack_to_series_of_lists(haystack, index=None):
if index is None:
index = toolz.first(
piece.index for piece in haystack if hasattr(piece, 'index')
)
pieces = reduce(
operator.add,
(
pd.Series(getattr(piece, 'values', piece), index=index).map(
ibis.util.promote_list
)
for piece in haystack
),
)
return pieces
示例9: execute_string_group_by_find_in_set
# 需要導入模塊: import toolz [as 別名]
# 或者: from toolz import first [as 別名]
def execute_string_group_by_find_in_set(op, needle, haystack, **kwargs):
# `list` could contain series, series groupbys, or scalars
# mixing series and series groupbys is not allowed
series_in_haystack = [
type(piece)
for piece in haystack
if isinstance(piece, (pd.Series, SeriesGroupBy))
]
if not series_in_haystack:
return ibis.util.safe_index(haystack, needle)
try:
(collection_type,) = frozenset(map(type, series_in_haystack))
except ValueError:
raise ValueError('Mixing Series and SeriesGroupBy is not allowed')
pieces = haystack_to_series_of_lists(
[getattr(piece, 'obj', piece) for piece in haystack]
)
result = pieces.map(toolz.flip(ibis.util.safe_index)(needle))
if issubclass(collection_type, pd.Series):
return result
assert issubclass(collection_type, SeriesGroupBy)
return result.groupby(
toolz.first(
piece.grouper.groupings
for piece in haystack
if hasattr(piece, 'grouper')
)
)
示例10: __init__
# 需要導入模塊: import toolz [as 別名]
# 或者: from toolz import first [as 別名]
def __init__(
self, table, by, having=None, order_by=None, window=None, **expressions
):
self.table = table
self.by = util.promote_list(by if by is not None else []) + [
_get_group_by_key(table, v).name(k)
for k, v in sorted(expressions.items(), key=toolz.first)
]
self._order_by = order_by or []
self._having = having or []
self._window = window
示例11: main_loop
# 需要導入模塊: import toolz [as 別名]
# 或者: from toolz import first [as 別名]
def main_loop(self):
if not hasattr(self, '_main_loop'):
raise ValueError("main loop must be assigned to extension first")
return self._main_loop
示例12: _print_attributes
# 需要導入模塊: import toolz [as 別名]
# 或者: from toolz import first [as 別名]
def _print_attributes(self, attribute_tuples):
for attr, value in sorted(attribute_tuples.items(), key=first):
if not self._attribute_filter(attr):
print("\t", "{}:".format(attr), value)
示例13: indexed_map
# 需要導入模塊: import toolz [as 別名]
# 或者: from toolz import first [as 別名]
def indexed_map(func: Func, *seqs: Seq, start=0) -> Seq:
"""
Like map, but pass the index of each element as the first argument to
func.
Examples:
>>> ''.join(indexed_map((X * Y), 'hello', start=1))
'heelllllllooooo'
See Also:
map
"""
return _map(func, itertools.count(start), *seqs)
示例14: index
# 需要導入模塊: import toolz [as 別名]
# 或者: from toolz import first [as 別名]
def index(x, seq):
try:
return toolz.first(i for i, y in enumerate(seq) if x == y)
except ValueError:
raise IndexError("element not found in sequence")
示例15: _adapt
# 需要導入模塊: import toolz [as 別名]
# 或者: from toolz import first [as 別名]
def _adapt(self, info):
# First, have an adaptive algorithm
if self.n_initial_parameters == "grid":
start = len(ParameterGrid(self.parameters))
else:
start = self.n_initial_parameters
def inverse(time):
""" Decrease target number of models inversely with time """
return int(start / (1 + time) ** self.decay_rate)
example = toolz.first(info.values())
time_step = example[-1]["partial_fit_calls"]
current_time_step = time_step + 1
next_time_step = current_time_step
if inverse(current_time_step) == 0:
# we'll never get out of here
next_time_step = 1
while inverse(current_time_step) == inverse(next_time_step) and (
self.decay_rate
and not self.patience
or next_time_step - current_time_step < self.fits_per_score
):
next_time_step += 1
target = max(1, inverse(next_time_step))
best = toolz.topk(target, info, key=lambda k: info[k][-1]["score"])
if len(best) == 1:
[best] = best
return {best: 0}
steps = next_time_step - current_time_step
instructions = {b: steps for b in best}
return instructions