當前位置: 首頁>>代碼示例>>Python>>正文


Python toolz.compose方法代碼示例

本文整理匯總了Python中toolz.compose方法的典型用法代碼示例。如果您正苦於以下問題:Python toolz.compose方法的具體用法?Python toolz.compose怎麽用?Python toolz.compose使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在toolz的用法示例。


在下文中一共展示了toolz.compose方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: all_of

# 需要導入模塊: import toolz [as 別名]
# 或者: from toolz import compose [as 別名]
def all_of(inners, arg):
    """All of the inner valudators must pass.

    The order of inner validators matters.

    Parameters
    ----------
    inners : List[validator]
      Functions are applied from right to left so allof([rule1, rule2], arg) is
      the same as rule1(rule2(arg)).
    arg : Any
      Value to be validated.

    Returns
    -------
    arg : Any
      Value maybe coerced by inner validators to the appropiate types
    """
    return compose(*inners)(arg) 
開發者ID:ibis-project,項目名稱:ibis,代碼行數:21,代碼來源:rules.py

示例2: matches

# 需要導入模塊: import toolz [as 別名]
# 或者: from toolz import compose [as 別名]
def matches(self, pattern):
        """
        Elementwise regex match.

        Parameters
        ----------
        pattern : str or compiled regex

        Returns
        -------
        matches : np.ndarray[bool]
            An array with the same shape as self indicating whether each
            element of self was matched by ``pattern``.
        """
        return self.map_predicate(compose(bool, pattern.match))

    # These types all implement an O(N) __contains__, so pre-emptively
    # coerce to `set`. 
開發者ID:enigmampc,項目名稱:catalyst,代碼行數:20,代碼來源:labelarray.py

示例3: physical_tables_join

# 需要導入模塊: import toolz [as 別名]
# 或者: from toolz import compose [as 別名]
def physical_tables_join(join):
    # Physical roots of Join nodes are the unique physical roots of their
    # left and right TableNodes.
    func = compose(physical_tables, methodcaller('op'))
    return list(unique(concat(map(func, (join.left, join.right))))) 
開發者ID:ibis-project,項目名稱:ibis,代碼行數:7,代碼來源:selection.py

示例4: visitor

# 需要導入模塊: import toolz [as 別名]
# 或者: from toolz import compose [as 別名]
def visitor(self):
        return compose(reversed, list) 
開發者ID:ibis-project,項目名稱:ibis,代碼行數:4,代碼來源:lineage.py

示例5: compose_processing_pipeline

# 需要導入模塊: import toolz [as 別名]
# 或者: from toolz import compose [as 別名]
def compose_processing_pipeline(depth, aug=None):
    steps = []
    if aug is not None:
        steps.append(_apply_augmentation(aug))

    if depth == "patch":
        steps.append(_add_depth)

    steps.append(_to_torch)
    steps.append(_expand_dims_if_necessary)
    steps.reverse()
    return compose(*steps) 
開發者ID:microsoft,項目名稱:seismic-deeplearning,代碼行數:14,代碼來源:utilities.py

示例6: _compose_processing_pipeline

# 需要導入模塊: import toolz [as 別名]
# 或者: from toolz import compose [as 別名]
def _compose_processing_pipeline(depth, aug=None):
    steps = []
    if aug is not None:
        steps.append(_apply_augmentation(aug))

    if depth == "patch":
        steps.append(_add_depth)

    steps.append(_to_torch)
    steps.append(_expand_dims_if_necessary)
    steps.reverse()
    return compose(*steps) 
開發者ID:microsoft,項目名稱:seismic-deeplearning,代碼行數:14,代碼來源:test.py

示例7: format_results

# 需要導入模塊: import toolz [as 別名]
# 或者: from toolz import compose [as 別名]
def format_results(terminal_width, key_list, separator, text_list,
                   left_align=True, min_factor=3, **kwargs):
    """Returns formatted results in two columns.
    """
    key_width = max(map(len, key_list))
    separator_length = len(separator)
    desc_wrap = toolz.identity
    if terminal_width:
        if key_width / terminal_width > .5:
            key_width = terminal_width // 2 - 3
        text_width = terminal_width - key_width - separator_length
        if text_width * min_factor > terminal_width:
            desc_wrap = toolz.compose(
                ('\n' + ' ' * (key_width + separator_length)).join,
                toolz.partial(textwrap.wrap, width=text_width, **kwargs),
            )

    if left_align:
        fmt = '%-*s%s%s'
    else:
        fmt = '%*s%s%s'

    for key, text in zip(key_list, text_list):
        text = desc_wrap(text)
        if len(key) > key_width:
            yield fmt % (key_width, key, separator, '')
            yield fmt % (key_width, '', ' ' * separator_length, text)
        else:
            yield fmt % (key_width, key, separator, text) 
開發者ID:rmax,項目名稱:databrewer,代碼行數:31,代碼來源:utils.py

示例8: test_quantiles_uneven_buckets

# 需要導入模塊: import toolz [as 別名]
# 或者: from toolz import compose [as 別名]
def test_quantiles_uneven_buckets(self):
        permute = partial(permute_rows, 5)
        shape = (5, 5)

        factor_data = permute(log1p(arange(25, dtype=float).reshape(shape)))
        mask_data = permute(self.eye_mask(shape=shape))

        f = F()
        m = Mask()

        permuted_array = compose(permute, partial(array, dtype=int64_dtype))
        self.check_terms(
            terms={
                '3_masked': f.quantiles(bins=3, mask=m),
                '7_masked': f.quantiles(bins=7, mask=m),
            },
            initial_workspace={
                f: factor_data,
                m: mask_data,
            },
            expected={
                '3_masked': permuted_array([[-1, 0,  0,  1,  2],
                                            [0, -1,  0,  1,  2],
                                            [0,  0, -1,  1,  2],
                                            [0,  0,  1, -1,  2],
                                            [0,  0,  1,  2, -1]]),
                '7_masked': permuted_array([[-1, 0,  2,  4,  6],
                                            [0, -1,  2,  4,  6],
                                            [0,  2, -1,  4,  6],
                                            [0,  2,  4, -1,  6],
                                            [0,  2,  4,  6, -1]]),
            },
            mask=self.build_mask(self.ones_mask(shape=shape)),
        ) 
開發者ID:zhanghan1990,項目名稱:zipline-chinese,代碼行數:36,代碼來源:test_factor.py

示例9: _test_quantiles_uneven_buckets

# 需要導入模塊: import toolz [as 別名]
# 或者: from toolz import compose [as 別名]
def _test_quantiles_uneven_buckets(self):
        permute = partial(permute_rows, 5)
        shape = (5, 5)

        factor_data = permute(log1p(arange(25, dtype=float).reshape(shape)))
        mask_data = permute(self.eye_mask(shape=shape))

        f = F()
        m = Mask()

        permuted_array = compose(permute, partial(array, dtype=int64_dtype))
        self.check_terms(
            terms={
                '3_masked': f.quantiles(bins=3, mask=m),
                '7_masked': f.quantiles(bins=7, mask=m),
            },
            initial_workspace={
                f: factor_data,
                m: mask_data,
            },
            expected={
                '3_masked': permuted_array([[-1, 0,  0,  1,  2],
                                            [0, -1,  0,  1,  2],
                                            [0,  0, -1,  1,  2],
                                            [0,  0,  1, -1,  2],
                                            [0,  0,  1,  2, -1]]),
                '7_masked': permuted_array([[-1, 0,  2,  4,  6],
                                            [0, -1,  2,  4,  6],
                                            [0,  2, -1,  4,  6],
                                            [0,  2,  4, -1,  6],
                                            [0,  2,  4,  6, -1]]),
            },
            mask=self.build_mask(self.ones_mask(shape=shape)),
        ) 
開發者ID:enigmampc,項目名稱:catalyst,代碼行數:36,代碼來源:test_factor.py

示例10: expect_types

# 需要導入模塊: import toolz [as 別名]
# 或者: from toolz import compose [as 別名]
def expect_types(__funcname=_qualified_name, **named):
    """
    Preprocessing decorator that verifies inputs have expected types.

    Usage
    -----
    >>> @expect_types(x=int, y=str)
    ... def foo(x, y):
    ...    return x, y
    ...
    >>> foo(2, '3')
    (2, '3')
    >>> foo(2.0, '3')  # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS
    Traceback (most recent call last):
       ...
    TypeError: ...foo() expected a value of type int for argument 'x',
    but got float instead.

    Notes
    -----
    A special argument, __funcname, can be provided as a string to override the
    function name shown in error messages.  This is most often used on __init__
    or __new__ methods to make errors refer to the class name instead of the
    function name.
    """
    for name, type_ in iteritems(named):
        if not isinstance(type_, (type, tuple)):
            raise TypeError(
                "expect_types() expected a type or tuple of types for "
                "argument '{name}', but got {type_} instead.".format(
                    name=name, type_=type_,
                )
            )

    def _expect_type(type_):
        # Slightly different messages for type and tuple of types.
        _template = (
            "%(funcname)s() expected a value of type {type_or_types} "
            "for argument '%(argname)s', but got %(actual)s instead."
        )
        if isinstance(type_, tuple):
            template = _template.format(
                type_or_types=' or '.join(map(_qualified_name, type_))
            )
        else:
            template = _template.format(type_or_types=_qualified_name(type_))

        return make_check(
            exc_type=TypeError,
            template=template,
            pred=lambda v: not isinstance(v, type_),
            actual=compose(_qualified_name, type),
            funcname=__funcname,
        )

    return preprocess(**valmap(_expect_type, named)) 
開發者ID:alpacahq,項目名稱:pylivetrader,代碼行數:58,代碼來源:input_validation.py

示例11: test_quantiles_unmasked

# 需要導入模塊: import toolz [as 別名]
# 或者: from toolz import compose [as 別名]
def test_quantiles_unmasked(self, seed):
        permute = partial(permute_rows, seed)

        shape = (6, 6)

        # Shuffle the input rows to verify that we don't depend on the order.
        # Take the log to ensure that we don't depend on linear scaling or
        # integrality of inputs
        factor_data = permute(log1p(arange(36, dtype=float).reshape(shape)))

        f = self.f

        # Apply the same shuffle we applied to the input rows to our
        # expectations. Doing it this way makes it obvious that our
        # expectation corresponds to our input, while still testing against
        # a range of input orderings.
        permuted_array = compose(permute, partial(array, dtype=int64_dtype))
        self.check_terms(
            terms={
                '2': f.quantiles(bins=2),
                '3': f.quantiles(bins=3),
                '6': f.quantiles(bins=6),
            },
            initial_workspace={
                f: factor_data,
            },
            expected={
                # The values in the input are all increasing, so the first half
                # of each row should be in the bottom bucket, and the second
                # half should be in the top bucket.
                '2': permuted_array([[0, 0, 0, 1, 1, 1],
                                     [0, 0, 0, 1, 1, 1],
                                     [0, 0, 0, 1, 1, 1],
                                     [0, 0, 0, 1, 1, 1],
                                     [0, 0, 0, 1, 1, 1],
                                     [0, 0, 0, 1, 1, 1]]),
                # Similar for three buckets.
                '3': permuted_array([[0, 0, 1, 1, 2, 2],
                                     [0, 0, 1, 1, 2, 2],
                                     [0, 0, 1, 1, 2, 2],
                                     [0, 0, 1, 1, 2, 2],
                                     [0, 0, 1, 1, 2, 2],
                                     [0, 0, 1, 1, 2, 2]]),
                # In the limiting case, we just have every column different.
                '6': permuted_array([[0, 1, 2, 3, 4, 5],
                                     [0, 1, 2, 3, 4, 5],
                                     [0, 1, 2, 3, 4, 5],
                                     [0, 1, 2, 3, 4, 5],
                                     [0, 1, 2, 3, 4, 5],
                                     [0, 1, 2, 3, 4, 5]]),
            },
            mask=self.build_mask(self.ones_mask(shape=shape)),
        ) 
開發者ID:zhanghan1990,項目名稱:zipline-chinese,代碼行數:55,代碼來源:test_factor.py

示例12: _test_top_and_bottom_with_groupby_and_mask

# 需要導入模塊: import toolz [as 別名]
# 或者: from toolz import compose [as 別名]
def _test_top_and_bottom_with_groupby_and_mask(self, dtype, seed):
        permute = partial(permute_rows, seed)
        permuted_array = compose(permute, partial(array, dtype=int64_dtype))

        shape = (8, 8)

        # Shuffle the input rows to verify that we correctly pick out the top
        # values independently of order.
        factor_data = permute(arange(0, 64, dtype=dtype).reshape(shape))
        classifier_data = permuted_array([[0, 0, 1, 1, 2, 2, 0, 0],
                                          [0, 0, 1, 1, 2, 2, 0, 0],
                                          [0, 1, 2, 3, 0, 1, 2, 3],
                                          [0, 1, 2, 3, 0, 1, 2, 3],
                                          [0, 0, 0, 0, 1, 1, 1, 1],
                                          [0, 0, 0, 0, 1, 1, 1, 1],
                                          [0, 0, 0, 0, 0, 0, 0, 0],
                                          [0, 0, 0, 0, 0, 0, 0, 0]])

        f = self.f
        c = self.c

        self.check_terms(
            terms={
                'top2': f.top(2, groupby=c),
                'bottom2': f.bottom(2, groupby=c),
            },
            initial_workspace={
                f: factor_data,
                c: classifier_data,
            },
            expected={
                # Should be the rightmost two entries in classifier_data,
                # ignoring the off-diagonal.
                'top2': permuted_array([[0, 1, 1, 1, 1, 1, 1, 0],
                                        [0, 1, 1, 1, 1, 1, 0, 1],
                                        [1, 1, 1, 1, 1, 0, 1, 1],
                                        [1, 1, 1, 1, 0, 1, 1, 1],
                                        [0, 1, 1, 0, 0, 0, 1, 1],
                                        [0, 1, 0, 1, 0, 0, 1, 1],
                                        [0, 0, 0, 0, 0, 0, 1, 1],
                                        [0, 0, 0, 0, 0, 0, 1, 1]], dtype=bool),
                # Should be the rightmost two entries in classifier_data,
                # ignoring the off-diagonal.
                'bottom2': permuted_array([[1, 1, 1, 1, 1, 1, 0, 0],
                                           [1, 1, 1, 1, 1, 1, 0, 0],
                                           [1, 1, 1, 1, 1, 0, 1, 1],
                                           [1, 1, 1, 1, 0, 1, 1, 1],
                                           [1, 1, 0, 0, 1, 1, 0, 0],
                                           [1, 1, 0, 0, 1, 1, 0, 0],
                                           [1, 0, 1, 0, 0, 0, 0, 0],
                                           [0, 1, 1, 0, 0, 0, 0, 0]],
                                          dtype=bool),
            },
            mask=self.build_mask(permute(rot90(self.eye_mask(shape=shape)))),
        ) 
開發者ID:enigmampc,項目名稱:catalyst,代碼行數:57,代碼來源:test_filter.py

示例13: _test_quantiles_unmasked

# 需要導入模塊: import toolz [as 別名]
# 或者: from toolz import compose [as 別名]
def _test_quantiles_unmasked(self, seed):
        permute = partial(permute_rows, seed)

        shape = (6, 6)

        # Shuffle the input rows to verify that we don't depend on the order.
        # Take the log to ensure that we don't depend on linear scaling or
        # integrality of inputs
        factor_data = permute(log1p(arange(36, dtype=float).reshape(shape)))

        f = self.f

        # Apply the same shuffle we applied to the input rows to our
        # expectations. Doing it this way makes it obvious that our
        # expectation corresponds to our input, while still testing against
        # a range of input orderings.
        permuted_array = compose(permute, partial(array, dtype=int64_dtype))
        self.check_terms(
            terms={
                '2': f.quantiles(bins=2),
                '3': f.quantiles(bins=3),
                '6': f.quantiles(bins=6),
            },
            initial_workspace={
                f: factor_data,
            },
            expected={
                # The values in the input are all increasing, so the first half
                # of each row should be in the bottom bucket, and the second
                # half should be in the top bucket.
                '2': permuted_array([[0, 0, 0, 1, 1, 1],
                                     [0, 0, 0, 1, 1, 1],
                                     [0, 0, 0, 1, 1, 1],
                                     [0, 0, 0, 1, 1, 1],
                                     [0, 0, 0, 1, 1, 1],
                                     [0, 0, 0, 1, 1, 1]]),
                # Similar for three buckets.
                '3': permuted_array([[0, 0, 1, 1, 2, 2],
                                     [0, 0, 1, 1, 2, 2],
                                     [0, 0, 1, 1, 2, 2],
                                     [0, 0, 1, 1, 2, 2],
                                     [0, 0, 1, 1, 2, 2],
                                     [0, 0, 1, 1, 2, 2]]),
                # In the limiting case, we just have every column different.
                '6': permuted_array([[0, 1, 2, 3, 4, 5],
                                     [0, 1, 2, 3, 4, 5],
                                     [0, 1, 2, 3, 4, 5],
                                     [0, 1, 2, 3, 4, 5],
                                     [0, 1, 2, 3, 4, 5],
                                     [0, 1, 2, 3, 4, 5]]),
            },
            mask=self.build_mask(self.ones_mask(shape=shape)),
        ) 
開發者ID:enigmampc,項目名稱:catalyst,代碼行數:55,代碼來源:test_factor.py

示例14: expect_types

# 需要導入模塊: import toolz [as 別名]
# 或者: from toolz import compose [as 別名]
def expect_types(__funcname=_qualified_name, **named):
    """
    Preprocessing decorator that verifies inputs have expected types.

    Examples
    --------
    >>> @expect_types(x=int, y=str)
    ... def foo(x, y):
    ...    return x, y
    ...
    >>> foo(2, '3')
    (2, '3')
    >>> foo(2.0, '3')  # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS
    Traceback (most recent call last):
       ...
    TypeError: ...foo() expected a value of type int for argument 'x',
    but got float instead.

    Notes
    -----
    A special argument, __funcname, can be provided as a string to override the
    function name shown in error messages.  This is most often used on __init__
    or __new__ methods to make errors refer to the class name instead of the
    function name.
    """
    for name, type_ in iteritems(named):
        if not isinstance(type_, (type, tuple)):
            raise TypeError(
                "expect_types() expected a type or tuple of types for "
                "argument '{name}', but got {type_} instead.".format(
                    name=name, type_=type_,
                )
            )

    def _expect_type(type_):
        # Slightly different messages for type and tuple of types.
        _template = (
            "%(funcname)s() expected a value of type {type_or_types} "
            "for argument '%(argname)s', but got %(actual)s instead."
        )
        if isinstance(type_, tuple):
            template = _template.format(
                type_or_types=' or '.join(map(_qualified_name, type_))
            )
        else:
            template = _template.format(type_or_types=_qualified_name(type_))

        return make_check(
            exc_type=TypeError,
            template=template,
            pred=lambda v: not isinstance(v, type_),
            actual=compose(_qualified_name, type),
            funcname=__funcname,
        )

    return preprocess(**valmap(_expect_type, named)) 
開發者ID:enigmampc,項目名稱:catalyst,代碼行數:58,代碼來源:input_validation.py

示例15: start_logger

# 需要導入模塊: import toolz [as 別名]
# 或者: from toolz import compose [as 別名]
def start_logger(ip_or_url,
                 username,
                 password,
                 database,
                 port=8086,
                 series_name='gpu_measurements',
                 polling_interval=1,
                 retention_duration=MEASUREMENTS_RETENTION_DURATION,
                 **tags):
    """ Starts GPU logger

    Logs GPU measurements to an influxdb database

    Parameters
    ----------
    ip_or_url: ip or url of influxdb
    username: Username to log into influxdb database
    password: Password to log into influxdb database
    database: Name of database to log data to. It will create the database if one doesn't exist
    port: A number indicating the port on which influxdb is listening
    series_name: Name of series/table to log data to
    polling_interval: polling interval for measurements in seconds [default:1]
    retention_duration: the duration to retain the measurements for valid values are 1h, 90m, 12h, 7d, and 4w. default:1d
    tags: One or more tags to apply to the data. These can then be used to group or select timeseries
          Example: --machine my_machine --cluster kerb01

    """

    logger = _logger()
    logger.info('Trying to connect to {} on port {} as {}'.format(ip_or_url, port, username))
    try:
        client = InfluxDBClient(ip_or_url, port, username, password)
        response = client.ping()
    except ConnectionError:
        logger.warning('Could not connect to InfluxDB. GPU metrics NOT being recorded')
        raise MetricsRecordingFailed()

    logger.info('Connected | version {}'.format(response))
    _switch_to_database(client, database)

    logger.info('Measurement retention duration {}'.format(retention_duration))
    _set_retention_policy(client, database, retention_duration)

    to_db = compose(_create_influxdb_writer(client, tags=tags),
                    _gpu_to_influxdb_format(series_name))
    logger.info('Starting logging...')
    return start_pushing_measurements_to(to_db, polling_interval=polling_interval) 
開發者ID:msalvaris,項目名稱:gpu_monitor,代碼行數:49,代碼來源:gpu_logger.py


注:本文中的toolz.compose方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。