本文整理匯總了Python中toolz.compose方法的典型用法代碼示例。如果您正苦於以下問題:Python toolz.compose方法的具體用法?Python toolz.compose怎麽用?Python toolz.compose使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類toolz
的用法示例。
在下文中一共展示了toolz.compose方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: all_of
# 需要導入模塊: import toolz [as 別名]
# 或者: from toolz import compose [as 別名]
def all_of(inners, arg):
"""All of the inner valudators must pass.
The order of inner validators matters.
Parameters
----------
inners : List[validator]
Functions are applied from right to left so allof([rule1, rule2], arg) is
the same as rule1(rule2(arg)).
arg : Any
Value to be validated.
Returns
-------
arg : Any
Value maybe coerced by inner validators to the appropiate types
"""
return compose(*inners)(arg)
示例2: matches
# 需要導入模塊: import toolz [as 別名]
# 或者: from toolz import compose [as 別名]
def matches(self, pattern):
"""
Elementwise regex match.
Parameters
----------
pattern : str or compiled regex
Returns
-------
matches : np.ndarray[bool]
An array with the same shape as self indicating whether each
element of self was matched by ``pattern``.
"""
return self.map_predicate(compose(bool, pattern.match))
# These types all implement an O(N) __contains__, so pre-emptively
# coerce to `set`.
示例3: physical_tables_join
# 需要導入模塊: import toolz [as 別名]
# 或者: from toolz import compose [as 別名]
def physical_tables_join(join):
# Physical roots of Join nodes are the unique physical roots of their
# left and right TableNodes.
func = compose(physical_tables, methodcaller('op'))
return list(unique(concat(map(func, (join.left, join.right)))))
示例4: visitor
# 需要導入模塊: import toolz [as 別名]
# 或者: from toolz import compose [as 別名]
def visitor(self):
return compose(reversed, list)
示例5: compose_processing_pipeline
# 需要導入模塊: import toolz [as 別名]
# 或者: from toolz import compose [as 別名]
def compose_processing_pipeline(depth, aug=None):
steps = []
if aug is not None:
steps.append(_apply_augmentation(aug))
if depth == "patch":
steps.append(_add_depth)
steps.append(_to_torch)
steps.append(_expand_dims_if_necessary)
steps.reverse()
return compose(*steps)
示例6: _compose_processing_pipeline
# 需要導入模塊: import toolz [as 別名]
# 或者: from toolz import compose [as 別名]
def _compose_processing_pipeline(depth, aug=None):
steps = []
if aug is not None:
steps.append(_apply_augmentation(aug))
if depth == "patch":
steps.append(_add_depth)
steps.append(_to_torch)
steps.append(_expand_dims_if_necessary)
steps.reverse()
return compose(*steps)
示例7: format_results
# 需要導入模塊: import toolz [as 別名]
# 或者: from toolz import compose [as 別名]
def format_results(terminal_width, key_list, separator, text_list,
left_align=True, min_factor=3, **kwargs):
"""Returns formatted results in two columns.
"""
key_width = max(map(len, key_list))
separator_length = len(separator)
desc_wrap = toolz.identity
if terminal_width:
if key_width / terminal_width > .5:
key_width = terminal_width // 2 - 3
text_width = terminal_width - key_width - separator_length
if text_width * min_factor > terminal_width:
desc_wrap = toolz.compose(
('\n' + ' ' * (key_width + separator_length)).join,
toolz.partial(textwrap.wrap, width=text_width, **kwargs),
)
if left_align:
fmt = '%-*s%s%s'
else:
fmt = '%*s%s%s'
for key, text in zip(key_list, text_list):
text = desc_wrap(text)
if len(key) > key_width:
yield fmt % (key_width, key, separator, '')
yield fmt % (key_width, '', ' ' * separator_length, text)
else:
yield fmt % (key_width, key, separator, text)
示例8: test_quantiles_uneven_buckets
# 需要導入模塊: import toolz [as 別名]
# 或者: from toolz import compose [as 別名]
def test_quantiles_uneven_buckets(self):
permute = partial(permute_rows, 5)
shape = (5, 5)
factor_data = permute(log1p(arange(25, dtype=float).reshape(shape)))
mask_data = permute(self.eye_mask(shape=shape))
f = F()
m = Mask()
permuted_array = compose(permute, partial(array, dtype=int64_dtype))
self.check_terms(
terms={
'3_masked': f.quantiles(bins=3, mask=m),
'7_masked': f.quantiles(bins=7, mask=m),
},
initial_workspace={
f: factor_data,
m: mask_data,
},
expected={
'3_masked': permuted_array([[-1, 0, 0, 1, 2],
[0, -1, 0, 1, 2],
[0, 0, -1, 1, 2],
[0, 0, 1, -1, 2],
[0, 0, 1, 2, -1]]),
'7_masked': permuted_array([[-1, 0, 2, 4, 6],
[0, -1, 2, 4, 6],
[0, 2, -1, 4, 6],
[0, 2, 4, -1, 6],
[0, 2, 4, 6, -1]]),
},
mask=self.build_mask(self.ones_mask(shape=shape)),
)
示例9: _test_quantiles_uneven_buckets
# 需要導入模塊: import toolz [as 別名]
# 或者: from toolz import compose [as 別名]
def _test_quantiles_uneven_buckets(self):
permute = partial(permute_rows, 5)
shape = (5, 5)
factor_data = permute(log1p(arange(25, dtype=float).reshape(shape)))
mask_data = permute(self.eye_mask(shape=shape))
f = F()
m = Mask()
permuted_array = compose(permute, partial(array, dtype=int64_dtype))
self.check_terms(
terms={
'3_masked': f.quantiles(bins=3, mask=m),
'7_masked': f.quantiles(bins=7, mask=m),
},
initial_workspace={
f: factor_data,
m: mask_data,
},
expected={
'3_masked': permuted_array([[-1, 0, 0, 1, 2],
[0, -1, 0, 1, 2],
[0, 0, -1, 1, 2],
[0, 0, 1, -1, 2],
[0, 0, 1, 2, -1]]),
'7_masked': permuted_array([[-1, 0, 2, 4, 6],
[0, -1, 2, 4, 6],
[0, 2, -1, 4, 6],
[0, 2, 4, -1, 6],
[0, 2, 4, 6, -1]]),
},
mask=self.build_mask(self.ones_mask(shape=shape)),
)
示例10: expect_types
# 需要導入模塊: import toolz [as 別名]
# 或者: from toolz import compose [as 別名]
def expect_types(__funcname=_qualified_name, **named):
"""
Preprocessing decorator that verifies inputs have expected types.
Usage
-----
>>> @expect_types(x=int, y=str)
... def foo(x, y):
... return x, y
...
>>> foo(2, '3')
(2, '3')
>>> foo(2.0, '3') # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS
Traceback (most recent call last):
...
TypeError: ...foo() expected a value of type int for argument 'x',
but got float instead.
Notes
-----
A special argument, __funcname, can be provided as a string to override the
function name shown in error messages. This is most often used on __init__
or __new__ methods to make errors refer to the class name instead of the
function name.
"""
for name, type_ in iteritems(named):
if not isinstance(type_, (type, tuple)):
raise TypeError(
"expect_types() expected a type or tuple of types for "
"argument '{name}', but got {type_} instead.".format(
name=name, type_=type_,
)
)
def _expect_type(type_):
# Slightly different messages for type and tuple of types.
_template = (
"%(funcname)s() expected a value of type {type_or_types} "
"for argument '%(argname)s', but got %(actual)s instead."
)
if isinstance(type_, tuple):
template = _template.format(
type_or_types=' or '.join(map(_qualified_name, type_))
)
else:
template = _template.format(type_or_types=_qualified_name(type_))
return make_check(
exc_type=TypeError,
template=template,
pred=lambda v: not isinstance(v, type_),
actual=compose(_qualified_name, type),
funcname=__funcname,
)
return preprocess(**valmap(_expect_type, named))
示例11: test_quantiles_unmasked
# 需要導入模塊: import toolz [as 別名]
# 或者: from toolz import compose [as 別名]
def test_quantiles_unmasked(self, seed):
permute = partial(permute_rows, seed)
shape = (6, 6)
# Shuffle the input rows to verify that we don't depend on the order.
# Take the log to ensure that we don't depend on linear scaling or
# integrality of inputs
factor_data = permute(log1p(arange(36, dtype=float).reshape(shape)))
f = self.f
# Apply the same shuffle we applied to the input rows to our
# expectations. Doing it this way makes it obvious that our
# expectation corresponds to our input, while still testing against
# a range of input orderings.
permuted_array = compose(permute, partial(array, dtype=int64_dtype))
self.check_terms(
terms={
'2': f.quantiles(bins=2),
'3': f.quantiles(bins=3),
'6': f.quantiles(bins=6),
},
initial_workspace={
f: factor_data,
},
expected={
# The values in the input are all increasing, so the first half
# of each row should be in the bottom bucket, and the second
# half should be in the top bucket.
'2': permuted_array([[0, 0, 0, 1, 1, 1],
[0, 0, 0, 1, 1, 1],
[0, 0, 0, 1, 1, 1],
[0, 0, 0, 1, 1, 1],
[0, 0, 0, 1, 1, 1],
[0, 0, 0, 1, 1, 1]]),
# Similar for three buckets.
'3': permuted_array([[0, 0, 1, 1, 2, 2],
[0, 0, 1, 1, 2, 2],
[0, 0, 1, 1, 2, 2],
[0, 0, 1, 1, 2, 2],
[0, 0, 1, 1, 2, 2],
[0, 0, 1, 1, 2, 2]]),
# In the limiting case, we just have every column different.
'6': permuted_array([[0, 1, 2, 3, 4, 5],
[0, 1, 2, 3, 4, 5],
[0, 1, 2, 3, 4, 5],
[0, 1, 2, 3, 4, 5],
[0, 1, 2, 3, 4, 5],
[0, 1, 2, 3, 4, 5]]),
},
mask=self.build_mask(self.ones_mask(shape=shape)),
)
示例12: _test_top_and_bottom_with_groupby_and_mask
# 需要導入模塊: import toolz [as 別名]
# 或者: from toolz import compose [as 別名]
def _test_top_and_bottom_with_groupby_and_mask(self, dtype, seed):
permute = partial(permute_rows, seed)
permuted_array = compose(permute, partial(array, dtype=int64_dtype))
shape = (8, 8)
# Shuffle the input rows to verify that we correctly pick out the top
# values independently of order.
factor_data = permute(arange(0, 64, dtype=dtype).reshape(shape))
classifier_data = permuted_array([[0, 0, 1, 1, 2, 2, 0, 0],
[0, 0, 1, 1, 2, 2, 0, 0],
[0, 1, 2, 3, 0, 1, 2, 3],
[0, 1, 2, 3, 0, 1, 2, 3],
[0, 0, 0, 0, 1, 1, 1, 1],
[0, 0, 0, 0, 1, 1, 1, 1],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0]])
f = self.f
c = self.c
self.check_terms(
terms={
'top2': f.top(2, groupby=c),
'bottom2': f.bottom(2, groupby=c),
},
initial_workspace={
f: factor_data,
c: classifier_data,
},
expected={
# Should be the rightmost two entries in classifier_data,
# ignoring the off-diagonal.
'top2': permuted_array([[0, 1, 1, 1, 1, 1, 1, 0],
[0, 1, 1, 1, 1, 1, 0, 1],
[1, 1, 1, 1, 1, 0, 1, 1],
[1, 1, 1, 1, 0, 1, 1, 1],
[0, 1, 1, 0, 0, 0, 1, 1],
[0, 1, 0, 1, 0, 0, 1, 1],
[0, 0, 0, 0, 0, 0, 1, 1],
[0, 0, 0, 0, 0, 0, 1, 1]], dtype=bool),
# Should be the rightmost two entries in classifier_data,
# ignoring the off-diagonal.
'bottom2': permuted_array([[1, 1, 1, 1, 1, 1, 0, 0],
[1, 1, 1, 1, 1, 1, 0, 0],
[1, 1, 1, 1, 1, 0, 1, 1],
[1, 1, 1, 1, 0, 1, 1, 1],
[1, 1, 0, 0, 1, 1, 0, 0],
[1, 1, 0, 0, 1, 1, 0, 0],
[1, 0, 1, 0, 0, 0, 0, 0],
[0, 1, 1, 0, 0, 0, 0, 0]],
dtype=bool),
},
mask=self.build_mask(permute(rot90(self.eye_mask(shape=shape)))),
)
示例13: _test_quantiles_unmasked
# 需要導入模塊: import toolz [as 別名]
# 或者: from toolz import compose [as 別名]
def _test_quantiles_unmasked(self, seed):
permute = partial(permute_rows, seed)
shape = (6, 6)
# Shuffle the input rows to verify that we don't depend on the order.
# Take the log to ensure that we don't depend on linear scaling or
# integrality of inputs
factor_data = permute(log1p(arange(36, dtype=float).reshape(shape)))
f = self.f
# Apply the same shuffle we applied to the input rows to our
# expectations. Doing it this way makes it obvious that our
# expectation corresponds to our input, while still testing against
# a range of input orderings.
permuted_array = compose(permute, partial(array, dtype=int64_dtype))
self.check_terms(
terms={
'2': f.quantiles(bins=2),
'3': f.quantiles(bins=3),
'6': f.quantiles(bins=6),
},
initial_workspace={
f: factor_data,
},
expected={
# The values in the input are all increasing, so the first half
# of each row should be in the bottom bucket, and the second
# half should be in the top bucket.
'2': permuted_array([[0, 0, 0, 1, 1, 1],
[0, 0, 0, 1, 1, 1],
[0, 0, 0, 1, 1, 1],
[0, 0, 0, 1, 1, 1],
[0, 0, 0, 1, 1, 1],
[0, 0, 0, 1, 1, 1]]),
# Similar for three buckets.
'3': permuted_array([[0, 0, 1, 1, 2, 2],
[0, 0, 1, 1, 2, 2],
[0, 0, 1, 1, 2, 2],
[0, 0, 1, 1, 2, 2],
[0, 0, 1, 1, 2, 2],
[0, 0, 1, 1, 2, 2]]),
# In the limiting case, we just have every column different.
'6': permuted_array([[0, 1, 2, 3, 4, 5],
[0, 1, 2, 3, 4, 5],
[0, 1, 2, 3, 4, 5],
[0, 1, 2, 3, 4, 5],
[0, 1, 2, 3, 4, 5],
[0, 1, 2, 3, 4, 5]]),
},
mask=self.build_mask(self.ones_mask(shape=shape)),
)
示例14: expect_types
# 需要導入模塊: import toolz [as 別名]
# 或者: from toolz import compose [as 別名]
def expect_types(__funcname=_qualified_name, **named):
"""
Preprocessing decorator that verifies inputs have expected types.
Examples
--------
>>> @expect_types(x=int, y=str)
... def foo(x, y):
... return x, y
...
>>> foo(2, '3')
(2, '3')
>>> foo(2.0, '3') # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS
Traceback (most recent call last):
...
TypeError: ...foo() expected a value of type int for argument 'x',
but got float instead.
Notes
-----
A special argument, __funcname, can be provided as a string to override the
function name shown in error messages. This is most often used on __init__
or __new__ methods to make errors refer to the class name instead of the
function name.
"""
for name, type_ in iteritems(named):
if not isinstance(type_, (type, tuple)):
raise TypeError(
"expect_types() expected a type or tuple of types for "
"argument '{name}', but got {type_} instead.".format(
name=name, type_=type_,
)
)
def _expect_type(type_):
# Slightly different messages for type and tuple of types.
_template = (
"%(funcname)s() expected a value of type {type_or_types} "
"for argument '%(argname)s', but got %(actual)s instead."
)
if isinstance(type_, tuple):
template = _template.format(
type_or_types=' or '.join(map(_qualified_name, type_))
)
else:
template = _template.format(type_or_types=_qualified_name(type_))
return make_check(
exc_type=TypeError,
template=template,
pred=lambda v: not isinstance(v, type_),
actual=compose(_qualified_name, type),
funcname=__funcname,
)
return preprocess(**valmap(_expect_type, named))
示例15: start_logger
# 需要導入模塊: import toolz [as 別名]
# 或者: from toolz import compose [as 別名]
def start_logger(ip_or_url,
username,
password,
database,
port=8086,
series_name='gpu_measurements',
polling_interval=1,
retention_duration=MEASUREMENTS_RETENTION_DURATION,
**tags):
""" Starts GPU logger
Logs GPU measurements to an influxdb database
Parameters
----------
ip_or_url: ip or url of influxdb
username: Username to log into influxdb database
password: Password to log into influxdb database
database: Name of database to log data to. It will create the database if one doesn't exist
port: A number indicating the port on which influxdb is listening
series_name: Name of series/table to log data to
polling_interval: polling interval for measurements in seconds [default:1]
retention_duration: the duration to retain the measurements for valid values are 1h, 90m, 12h, 7d, and 4w. default:1d
tags: One or more tags to apply to the data. These can then be used to group or select timeseries
Example: --machine my_machine --cluster kerb01
"""
logger = _logger()
logger.info('Trying to connect to {} on port {} as {}'.format(ip_or_url, port, username))
try:
client = InfluxDBClient(ip_or_url, port, username, password)
response = client.ping()
except ConnectionError:
logger.warning('Could not connect to InfluxDB. GPU metrics NOT being recorded')
raise MetricsRecordingFailed()
logger.info('Connected | version {}'.format(response))
_switch_to_database(client, database)
logger.info('Measurement retention duration {}'.format(retention_duration))
_set_retention_policy(client, database, retention_duration)
to_db = compose(_create_influxdb_writer(client, tags=tags),
_gpu_to_influxdb_format(series_name))
logger.info('Starting logging...')
return start_pushing_measurements_to(to_db, polling_interval=polling_interval)