本文整理匯總了Python中toolz.assoc方法的典型用法代碼示例。如果您正苦於以下問題:Python toolz.assoc方法的具體用法?Python toolz.assoc怎麽用?Python toolz.assoc使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類toolz
的用法示例。
在下文中一共展示了toolz.assoc方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_parameterized_term_default_value
# 需要導入模塊: import toolz [as 別名]
# 或者: from toolz import assoc [as 別名]
def test_parameterized_term_default_value(self):
defaults = {'a': 'default for a', 'b': 'default for b'}
class F(Factor):
params = defaults
inputs = (SomeDataSet.foo,)
dtype = 'f8'
window_length = 5
assert_equal(F().params, defaults)
assert_equal(F(a='new a').params, assoc(defaults, 'a', 'new a'))
assert_equal(F(b='new b').params, assoc(defaults, 'b', 'new b'))
assert_equal(
F(a='new a', b='new b').params,
{'a': 'new a', 'b': 'new b'},
)
示例2: test_parameterized_term_default_value_with_not_specified
# 需要導入模塊: import toolz [as 別名]
# 或者: from toolz import assoc [as 別名]
def test_parameterized_term_default_value_with_not_specified(self):
defaults = {'a': 'default for a', 'b': NotSpecified}
class F(Factor):
params = defaults
inputs = (SomeDataSet.foo,)
dtype = 'f8'
window_length = 5
pattern = r"F expected a keyword parameter 'b'\."
with assert_raises_regex(TypeError, pattern):
F()
with assert_raises_regex(TypeError, pattern):
F(a='new a')
assert_equal(F(b='new b').params, assoc(defaults, 'b', 'new b'))
assert_equal(
F(a='new a', b='new b').params,
{'a': 'new a', 'b': 'new b'},
)
示例3: decode
# 需要導入模塊: import toolz [as 別名]
# 或者: from toolz import assoc [as 別名]
def decode(self, data: bytes) -> _DecodedMsgType:
try:
raw_decoded = cast(Dict[str, int], super().decode(data))
except rlp.exceptions.ListDeserializationError:
self.logger.warning("Malformed Disconnect message: %s" % data)
raise MalformedMessage("Malformed Disconnect message: {}".format(data))
return assoc(
raw_decoded, "reason_name", self.get_reason_name(raw_decoded["reason"])
)
示例4: _get_subnet_config_w_az
# 需要導入模塊: import toolz [as 別名]
# 或者: from toolz import assoc [as 別名]
def _get_subnet_config_w_az(self, network_config):
az_count = int(network_config.get('az_count', 2))
subnet_config = network_config.get('subnet_config', {})
for subnet in subnet_config:
for az in range(az_count):
newsubnet = assoc(subnet, 'AZ', az)
yield newsubnet
示例5: _get_subnet_config_w_cidr
# 需要導入模塊: import toolz [as 別名]
# 或者: from toolz import assoc [as 別名]
def _get_subnet_config_w_cidr(self, network_config):
network_cidr_base = str(network_config.get('network_cidr_base', '172.16.0.0'))
network_cidr_size = str(network_config.get('network_cidr_size', '20'))
first_network_address_block = str(network_config.get('first_network_address_block', network_cidr_base))
ret_val = {}
base_cidr = network_cidr_base + '/' + network_cidr_size
net = netaddr.IPNetwork(base_cidr)
grouped_subnet = groupby('size', self._get_subnet_config_w_az(network_config))
subnet_groups = sorted(grouped_subnet.items())
available_cidrs = []
for subnet_size, subnet_configs in subnet_groups:
newcidrs = net.subnet(int(subnet_size))
for subnet_config in subnet_configs:
try:
cidr = newcidrs.next()
except StopIteration as e:
net = chain(*reversed(available_cidrs)).next()
newcidrs = net.subnet(int(subnet_size))
cidr = newcidrs.next()
new_config = assoc(subnet_config, 'cidr', str(cidr))
yield new_config
else:
net = newcidrs.next()
available_cidrs.append(newcidrs)
示例6: train
# 需要導入模塊: import toolz [as 別名]
# 或者: from toolz import assoc [as 別名]
def train(client, data, label, params, model_factory, weight=None, **kwargs):
# Split arrays/dataframes into parts. Arrange parts into tuples to enforce co-locality
data_parts = _split_to_parts(data, is_matrix=True)
label_parts = _split_to_parts(label, is_matrix=False)
if weight is None:
parts = list(map(delayed, zip(data_parts, label_parts)))
else:
weight_parts = _split_to_parts(weight, is_matrix=False)
parts = list(map(delayed, zip(data_parts, label_parts, weight_parts)))
# Start computation in the background
parts = client.compute(parts)
wait(parts)
for part in parts:
if part.status == 'error':
return part # trigger error locally
# Find locations of all parts and map them to particular Dask workers
key_to_part_dict = dict([(part.key, part) for part in parts])
who_has = client.who_has(parts)
worker_map = defaultdict(list)
for key, workers in who_has.items():
worker_map[first(workers)].append(key_to_part_dict[key])
master_worker = first(worker_map)
worker_ncores = client.ncores()
if 'tree_learner' not in params or params['tree_learner'].lower() not in {'data', 'feature', 'voting'}:
logger.warning('Parameter tree_learner not set or set to incorrect value '
f'({params.get("tree_learner", None)}), using "data" as default')
params['tree_learner'] = 'data'
# Tell each worker to train on the parts that it has locally
futures_classifiers = [client.submit(_train_part,
model_factory=model_factory,
params=assoc(params, 'num_threads', worker_ncores[worker]),
list_of_parts=list_of_parts,
worker_addresses=list(worker_map.keys()),
local_listen_port=params.get('local_listen_port', 12400),
time_out=params.get('time_out', 120),
return_model=(worker == master_worker),
**kwargs)
for worker, list_of_parts in worker_map.items()]
results = client.gather(futures_classifiers)
results = [v for v in results if v]
return results[0]