當前位置: 首頁>>代碼示例>>Python>>正文


Python timeout.timeout方法代碼示例

本文整理匯總了Python中timeout.timeout方法的典型用法代碼示例。如果您正苦於以下問題:Python timeout.timeout方法的具體用法?Python timeout.timeout怎麽用?Python timeout.timeout使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在timeout的用法示例。


在下文中一共展示了timeout.timeout方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_training

# 需要導入模塊: import timeout [as 別名]
# 或者: from timeout import timeout [as 別名]
def test_training(sagemaker_session, image_uri, instance_type, instance_count):
    hyperparameters = {'sagemaker_parameter_server_enabled': True} if instance_count > 1 else {}
    hyperparameters['epochs'] = 1

    mx = MXNet(entry_point=SCRIPT_PATH,
               role='SageMakerRole',
               train_instance_count=instance_count,
               train_instance_type=instance_type,
               sagemaker_session=sagemaker_session,
               image_name=image_uri,
               hyperparameters=hyperparameters)

    with timeout(minutes=15):
        prefix = 'mxnet_mnist/{}'.format(utils.sagemaker_timestamp())
        train_input = mx.sagemaker_session.upload_data(path=os.path.join(DATA_PATH, 'train'),
                                                       key_prefix=prefix + '/train')
        test_input = mx.sagemaker_session.upload_data(path=os.path.join(DATA_PATH, 'test'),
                                                      key_prefix=prefix + '/test')

        job_name = utils.unique_name_from_base('test-mxnet-image')
        mx.fit({'train': train_input, 'test': test_input}, job_name=job_name) 
開發者ID:aws,項目名稱:sagemaker-mxnet-training-toolkit,代碼行數:23,代碼來源:test_training.py

示例2: test_coach

# 需要導入模塊: import timeout [as 別名]
# 或者: from timeout import timeout [as 別名]
def test_coach(sagemaker_session, ecr_image, instance_type):
    source_dir = os.path.join(RESOURCE_PATH, 'coach_cartpole')
    dependencies = [os.path.join(RESOURCE_PATH, 'sagemaker_rl')]
    cartpole = 'train_coach.py'

    estimator = RLEstimator(entry_point=cartpole,
                            source_dir=source_dir,
                            role='SageMakerRole',
                            train_instance_count=1,
                            train_instance_type=instance_type,
                            sagemaker_session=sagemaker_session,
                            image_name=ecr_image,
                            dependencies=dependencies,
                            hyperparameters={
                                "save_model": 1,
                                "RLCOACH_PRESET": "preset_cartpole_clippedppo",
                                "rl.agent_params.algorithm.discount": 0.9,
                                "rl.evaluation_steps:EnvironmentEpisodes": 1,
                            })

    with timeout(minutes=15):
        estimator.fit() 
開發者ID:aws,項目名稱:sagemaker-rl-container,代碼行數:24,代碼來源:test_coach.py

示例3: test_syslog_qfx_influx_01

# 需要導入模塊: import timeout [as 別名]
# 或者: from timeout import timeout [as 別名]
def test_syslog_qfx_influx_01():
    FNAME       = 'test_syslog_qfx_01'
    PCAP_FILE   = FNAME + "/syslog_qfx_01_16000.pcap"

    open_nti_input_syslog_lib.start_fluentd_syslog(output_influx='true')
    open_nti_input_syslog_lib.replay_file(PCAP_FILE)

    time.sleep(5)

    db = open_nti_input_syslog_lib.get_influxdb_handle()
    query = 'SELECT * FROM events'
    result = db.query(query)
    points = result.get_points()


    assert len(list(points)) != 0

# @timeout(30)
# def test_syslog_qfx_kafka_01():
#
#     FNAME       = 'test_syslog_qfx_01'
#     PCAP_FILE   = FNAME + "/syslog_qfx_01_16000.pcap"
#
#     open_nti_input_syslog_lib.start_fluentd_syslog(output_kafka='true')
#     time.sleep(1)
#     open_nti_input_syslog_lib.replay_file(PCAP_FILE)
#
#     time.sleep(5)
#
#     counter = open_nti_input_syslog_lib.check_kafka_msg()
#
#     assert counter == 100 
開發者ID:Juniper,項目名稱:open-nti,代碼行數:34,代碼來源:test_input_syslog.py

示例4: test_tuning

# 需要導入模塊: import timeout [as 別名]
# 或者: from timeout import timeout [as 別名]
def test_tuning(sagemaker_session, image_uri, instance_type):
    mx = MXNet(entry_point=SCRIPT_PATH,
               role='SageMakerRole',
               train_instance_count=1,
               train_instance_type=instance_type,
               sagemaker_session=sagemaker_session,
               image_name=image_uri,
               hyperparameters={'epochs': 1})

    hyperparameter_ranges = {'learning-rate': ContinuousParameter(0.01, 0.2)}
    objective_metric_name = 'Validation-accuracy'
    metric_definitions = [
        {'Name': 'Validation-accuracy', 'Regex': 'Validation-accuracy=([0-9\\.]+)'}]

    tuner = HyperparameterTuner(mx,
                                objective_metric_name,
                                hyperparameter_ranges,
                                metric_definitions,
                                max_jobs=2,
                                max_parallel_jobs=2)

    with timeout(minutes=20):
        prefix = 'mxnet_mnist/{}'.format(utils.sagemaker_timestamp())
        train_input = mx.sagemaker_session.upload_data(path=os.path.join(DATA_PATH, 'train'),
                                                       key_prefix=prefix + '/train')
        test_input = mx.sagemaker_session.upload_data(path=os.path.join(DATA_PATH, 'test'),
                                                      key_prefix=prefix + '/test')

        job_name = utils.unique_name_from_base('test-mxnet-image', max_length=32)
        tuner.fit({'train': train_input, 'test': test_input}, job_name=job_name)
        tuner.wait() 
開發者ID:aws,項目名稱:sagemaker-mxnet-training-toolkit,代碼行數:33,代碼來源:test_tuning.py

示例5: test_tuning

# 需要導入模塊: import timeout [as 別名]
# 或者: from timeout import timeout [as 別名]
def test_tuning(sagemaker_session, image_uri, instance_type, framework_version):
    resource_path = os.path.join(os.path.dirname(__file__), '..', '..', 'resources')
    script = os.path.join(resource_path, 'mnist', 'mnist.py')

    estimator = TensorFlow(entry_point=script,
                           role='SageMakerRole',
                           train_instance_type=instance_type,
                           train_instance_count=1,
                           sagemaker_session=sagemaker_session,
                           image_name=image_uri,
                           framework_version=framework_version,
                           script_mode=True)

    hyperparameter_ranges = {'epochs': IntegerParameter(1, 2)}
    objective_metric_name = 'accuracy'
    metric_definitions = [{'Name': objective_metric_name, 'Regex': 'accuracy = ([0-9\\.]+)'}]

    tuner = HyperparameterTuner(estimator,
                                objective_metric_name,
                                hyperparameter_ranges,
                                metric_definitions,
                                max_jobs=2,
                                max_parallel_jobs=2)

    with timeout(minutes=20):
        inputs = estimator.sagemaker_session.upload_data(
            path=os.path.join(resource_path, 'mnist', 'data'),
            key_prefix='scriptmode/mnist')

        tuning_job_name = unique_name_from_base('test-tf-sm-tuning', max_length=32)
        tuner.fit(inputs, job_name=tuning_job_name)
        tuner.wait() 
開發者ID:aws,項目名稱:sagemaker-tensorflow-training-toolkit,代碼行數:34,代碼來源:test_mnist.py

示例6: _test_mnist_train

# 需要導入模塊: import timeout [as 別名]
# 或者: from timeout import timeout [as 別名]
def _test_mnist_train(sagemaker_session, ecr_image, instance_type, instance_count, script):
    source_dir = 'test/resources/mnist'

    with timeout(minutes=15):
        data_path = 'test/resources/mnist/data'

        chainer = Chainer(entry_point=script,
                          source_dir=source_dir,
                          role='SageMakerRole',
                          train_instance_count=instance_count,
                          train_instance_type=instance_type,
                          sagemaker_session=sagemaker_session,
                          image_name=ecr_image,
                          hyperparameters={'batch-size': 10000, 'epochs': 1})

        prefix = 'chainer_mnist/{}'.format(sagemaker_timestamp())

        train_data_path = os.path.join(data_path, 'train')

        key_prefix = prefix + '/train'
        train_input = sagemaker_session.upload_data(path=train_data_path, key_prefix=key_prefix)

        test_path = os.path.join(data_path, 'test')
        test_input = sagemaker_session.upload_data(path=test_path, key_prefix=prefix + '/test')

        chainer.fit({'train': train_input, 'test': test_input}) 
開發者ID:aws,項目名稱:sagemaker-chainer-container,代碼行數:28,代碼來源:test_mnist.py

示例7: test_ray

# 需要導入模塊: import timeout [as 別名]
# 或者: from timeout import timeout [as 別名]
def test_ray(sagemaker_session, ecr_image, instance_type, framework):
    source_dir = os.path.join(RESOURCE_PATH, 'ray_cartpole')
    cartpole = 'train_ray_tf.py' if framework == 'tensorflow' else 'train_ray_torch.py'

    estimator = RLEstimator(entry_point=cartpole,
                            source_dir=source_dir,
                            role='SageMakerRole',
                            train_instance_count=1,
                            train_instance_type=instance_type,
                            sagemaker_session=sagemaker_session,
                            image_name=ecr_image)

    with timeout(minutes=15):
        estimator.fit() 
開發者ID:aws,項目名稱:sagemaker-rl-container,代碼行數:16,代碼來源:test_ray.py

示例8: test_gym

# 需要導入模塊: import timeout [as 別名]
# 或者: from timeout import timeout [as 別名]
def test_gym(sagemaker_session, ecr_image, instance_type, framework):
    resource_path = os.path.join(RESOURCE_PATH, 'gym')
    gym_script = 'launcher.sh' if framework == 'tensorflow' else 'gym_envs.py'
    estimator = RLEstimator(entry_point=gym_script,
                            source_dir=resource_path,
                            role='SageMakerRole',
                            train_instance_count=1,
                            train_instance_type=instance_type,
                            sagemaker_session=sagemaker_session,
                            image_name=ecr_image)

    with timeout(minutes=15):
        estimator.fit() 
開發者ID:aws,項目名稱:sagemaker-rl-container,代碼行數:15,代碼來源:test_gym.py


注:本文中的timeout.timeout方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。