當前位置: 首頁>>代碼示例>>Python>>正文


Python tifffile.imsave方法代碼示例

本文整理匯總了Python中tifffile.imsave方法的典型用法代碼示例。如果您正苦於以下問題:Python tifffile.imsave方法的具體用法?Python tifffile.imsave怎麽用?Python tifffile.imsave使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tifffile的用法示例。


在下文中一共展示了tifffile.imsave方法的13個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: write3dTiff

# 需要導入模塊: import tifffile [as 別名]
# 或者: from tifffile import imsave [as 別名]
def write3dTiff(data,fName):
    imsave(fName,data)

        
# def getTiffSize(fName):
#     from PIL import Image
#     img = Image.open(fName, 'r')
#     depth = 0
#     while True:
#         try:
#             img.seek(depth)
#         except Exception as e:
#             break
#         depth += 1
#
#     return (depth,)+img.size[::-1] 
開發者ID:maweigert,項目名稱:spimagine,代碼行數:18,代碼來源:imgutils.py

示例2: imsave

# 需要導入模塊: import tifffile [as 別名]
# 或者: from tifffile import imsave [as 別名]
def imsave(filename: str, data: np.ndarray):
    """Custom implementation of imsave to avoid skimage dependency.

    Parameters
    ----------
    filename : string
        The path to write the file to.
    data : np.ndarray
        The image data.
    """
    ext = os.path.splitext(filename)[1]
    if ext in [".tif", ".tiff"]:
        import tifffile

        tifffile.imsave(filename, data)
    else:
        import imageio

        imageio.imsave(filename, data) 
開發者ID:napari,項目名稱:napari,代碼行數:21,代碼來源:io.py

示例3: save_rgb_image

# 需要導入模塊: import tifffile [as 別名]
# 或者: from tifffile import imsave [as 別名]
def save_rgb_image(self, image, filepath):
#        size = [image.shape[0], image.shape[1]]
        minval = np.amin(image)
        maxval = np.amax(image)
        image = (image - minval)/ (maxval - minval + 0.01)
        image *= 255
        image = image.astype(np.uint8)
#        image = np.reshape(image, size)
        tifffile.imsave(filepath, image) 
開發者ID:pubgeo,項目名稱:dfc2019,代碼行數:11,代碼來源:train.py

示例4: writeData

# 需要導入模塊: import tifffile [as 別名]
# 或者: from tifffile import imsave [as 別名]
def writeData(filename, data):
    """Write image data to tif file
    
    Arguments:
        filename (str): file name 
        data (array): image data
    
    Returns:
        str: tif file name
    """
    
    d = len(data.shape);
    
    if d == 2:
        #tiff.imsave(filename, data);
        tiff.imsave(filename, data.transpose([1,0]));
    elif d == 3:   
        #tiff.imsave(filename, data.transpose([2,0,1]));
        tiff.imsave(filename, data.transpose([2,1,0]));
    elif d == 4:        
        #tiffile (z,y,x,c)
        #t = tiff.TiffWriter(filename, bigtiff = True);
        #t.save(data.transpose([2,0,1,3]), photometric = 'minisblack',  planarconfig = 'contig');
        #t.save(data.transpose([2,1,0,3]), photometric = 'minisblack',  planarconfig = 'contig')
        #t.close();    
        tiff.imsave(filename, data.transpose([2,1,0,3]), photometric = 'minisblack',  planarconfig = 'contig', bigtiff = True);
    else:
        raise RuntimeError('writing multiple channel data to tif not supported!');
    
    return filename; 
開發者ID:ChristophKirst,項目名稱:ClearMap,代碼行數:32,代碼來源:TIF.py

示例5: write_tiff_image

# 需要導入模塊: import tifffile [as 別名]
# 或者: from tifffile import imsave [as 別名]
def write_tiff_image(filename, image, compress=False):
    """ Write image data to TIFF file

    :param filename: name of file to write data to
    :type filename: str
    :param image: image data to write to file
    :type image: numpy array
    :param compress: whether to compress data. If `True`, lzma compression is used. Default is `False`
    :type compress: bool
    """
    if compress:
        return tiff.imsave(filename, image, compress='lzma')  # loseless compression, works very well on masks
    return tiff.imsave(filename, image) 
開發者ID:sentinel-hub,項目名稱:sentinelhub-py,代碼行數:15,代碼來源:io_utils.py

示例6: imsave

# 需要導入模塊: import tifffile [as 別名]
# 或者: from tifffile import imsave [as 別名]
def imsave(self):
        """
        Use tifffile.imsave to write image2.tiff.
        """
        file_name = os.path.join(self.data_dir, "image2.tiff")

        data = numpy.array([[1, 2, 3],
                            [4, 5, 6]])

        tifffile.imsave(file_name, data)
        os.remove(file_name) 
開發者ID:recipy,項目名稱:recipy,代碼行數:13,代碼來源:run_tifffile.py

示例7: patches_and_cocoann

# 需要導入模塊: import tifffile [as 別名]
# 或者: from tifffile import imsave [as 別名]
def patches_and_cocoann(gt, outdir_rgb, outdir_mpan, count=1,create_anns=True):
    gt.index = gt.ImageId
    gt_flt = gt[gt.PolygonWKT_Geo != 'POLYGON EMPTY']
    gv = gt_flt.ImageId.value_counts()
    annotations = []
    images = []
    counter = count
    for u in gt_flt.ImageId.unique():
        try:
            pan_sharpen_dir = ''.join([RAW_DIR, gt.name, '/Pan-Sharpen/'])
            image_file = ''.join([pan_sharpen_dir, 'Pan-Sharpen', '_', u, '.tif'])
            img_rgb = tifffile.imread(image_file)
            if np.argmin(img_rgb.shape) == 0:
                img_rgb = np.transpose(img_rgb, (1, 2, 0))
            img_rgb = img_rgb[:, :, [3, 2, 1, 0]]
            img_mpan = get_pan_sharpend(''.join([RAW_DIR, gt.name, '/']), u)

        except:
            print('load error..', u)
            continue
        if gv[u] > 1:
            poly = gt.loc[u].PolygonWKT_Pix.apply(lambda x: loads(x)).values.tolist()
        else:
            poly = [loads(gt.loc[u].PolygonWKT_Pix)]
        mask = util.mask_for_polygons(poly, im_size=imsize)
        img_patches_rgb, mask_patches, kp = patch_creator.create(img=img_rgb, mask=mask, nonzero=True)
        img_patches_mpan, _, _ = patch_creator.create(img=img_mpan, mask=mask, nonzero=True)

        for i, k in enumerate(kp.keys()):
            file_name_rgb = os.path.join(outdir_rgb, ''.join([u, '_', str(k), '.tif']))
            file_name_mpan = os.path.join(outdir_mpan, ''.join([u, '_', str(k), '.tif']))
            if create_anns:
                anns, images_d, counter = create_coco_anns(file_name_rgb, counter, mask_patches[i].squeeze())
                annotations.extend(anns)
                images.extend(images_d)
            tifffile.imsave(file_name_mpan, img_patches_mpan[i].astype('uint16'))
            tifffile.imsave(file_name_rgb, img_patches_rgb[i].astype('uint16'))
        if DEBUG:
            break
    return annotations, images, counter 
開發者ID:SpaceNetChallenge,項目名稱:SpaceNet_Off_Nadir_Solutions,代碼行數:42,代碼來源:create_patches_all.py

示例8: save_disparity_image

# 需要導入模塊: import tifffile [as 別名]
# 或者: from tifffile import imsave [as 別名]
def save_disparity_image(self, image, filepath):
        size = [image.shape[0], image.shape[1]]
        minval = -self.dmax
        maxval = self.dmax
        image = (image - minval)/ (maxval - minval + 0.01)
        image[image < 0.0] = 0.0
        image[image > 1.0] = 1.0
        image *= 255
        image = image.astype(np.uint8)
        image = np.reshape(image, size)
        tifffile.imsave(filepath, image) 
開發者ID:pubgeo,項目名稱:dfc2019,代碼行數:13,代碼來源:train.py

示例9: write_file

# 需要導入模塊: import tifffile [as 別名]
# 或者: from tifffile import imsave [as 別名]
def write_file(f, img):
    """
    Write a file f.
    """
    img = np.squeeze(img)
    if f[-4:] == 'tiff' or f[-3:] == 'tif':
        tifffile.imsave(f, img)
    else:
        img = np.floor(img + 0.5)
        img[img < 0] = 0
        img[img > 255] = 255
        img = np.asarray(img, dtype=np.uint8)
        imageio.imwrite(f, img) 
開發者ID:axeldavy,項目名稱:vnlnet,代碼行數:15,代碼來源:test.py

示例10: _save_registered_frames

# 需要導入模塊: import tifffile [as 別名]
# 或者: from tifffile import imsave [as 別名]
def _save_registered_frames(frames, save_name, save_fmt, verbose=False):
    """
    Save. Only use for debugging.
    Parameters
    ----------
    Returns
    -------
    """
    if verbose:
        print('    Saving...')
    try:  # this is ugly
        import tifffile
    except ImportError:
        try:
            from sima.misc import tifffile
        except ImportError:
            if verbose:
                print('        Cannot find tifffile')

    if save_fmt == 'singles':
        for idx in range(frames.shape[0]):
            tifffile.imsave(
                save_name + '_' + '{number:05d}'.format(number=idx) +
                '_DFTreg.tif', frames[idx].astype(np.uint16))
    if save_fmt == 'mptiff':
        tifffile.imsave(save_name + '_DFTreg.tif',
                        frames.astype(np.uint16))
    elif save_fmt == 'bigtiff':
        tifffile.imsave(save_name + '_DFTreg.tif',
                        frames.astype(np.uint16), bigtiff=True) 
開發者ID:losonczylab,項目名稱:sima,代碼行數:32,代碼來源:dftreg.py

示例11: stack_process

# 需要導入模塊: import tifffile [as 別名]
# 或者: from tifffile import imsave [as 別名]
def stack_process(pred, bilinear, gt, offset_frames=0):
    stack_pred = PIL.Image.open(pred)
    stack_bilinear = PIL.Image.open(bilinear)
    stack_gt  = PIL.Image.open(gt)

    stem_pred = Path(pred).stem
    stem_bilinear = Path(bilinear).stem
    stem_gt = Path(gt).stem

    frames = stack_pred.n_frames
    stack_psnr = []
    stack_lpsnr = []
    stack_ssim = []
    stack_lssim = []
    pred_slice_name = []
    bilinear_slice_name = []
    gt_slice_name = []
    #y_norm1s = []
    #x1_norms = []
    #y_norm2s = []
    #x2_norms = []

    for i in range(frames):
        stack_pred.seek(i)
        stack_bilinear.seek(i) if frames == 1 else stack_bilinear.seek(i+offset_frames)
        stack_gt.seek(i) if frames == 1 else stack_gt.seek(i+offset_frames)

        x1 = np.array(stack_pred).astype(np.float32)
        x2 = np.array(stack_bilinear).astype(np.float32)
        y = np.array(stack_gt).astype(np.float32)
        psnr, ssim, l_psnr, l_ssim, y_norm1, x1_norm, y_norm2, x2_norm = slice_process(x1, x2, y)

        stack_psnr.append(psnr)
        stack_lpsnr.append(l_psnr)
        stack_ssim.append(ssim)
        stack_lssim.append(l_ssim)

        pred_slice_name.append(f'{stem_pred}_z{i}.tif')
        bilinear_slice_name.append(f'{stem_bilinear}_z{i+offset_frames}.tif')
        gt_slice_name.append(f'{stem_gt}_z{i+offset_frames}.tif')
        #y_norm1s.append(np.array(y_norm1).copy())
        #x1_norms.append(np.array(x1_norm).copy())
        #y_norm2s.append(np.array(y_norm2).copy())
        #x2_norms.append(np.array(x2_norm).copy())


    #tifffile.imsave(str(exp_dir/f"{stem}_GTnormtopred.tif"), np.stack(y_norm1s).astype(np.float32))
    #tifffile.imsave(str(exp_dir/f"{stem}_prednorm.tif"), np.stack(x1_norms).astype(np.float32))
    #tifffile.imsave(str(exp_dir/f"{stem}_GTnormtobilinear.tif"), np.stack(y_norm2s).astype(np.float32))
    #tifffile.imsave(str(exp_dir/f"{stem}_bilinearnorm.tif"), np.stack(x2_norms).astype(np.float32))
    return pred_slice_name,bilinear_slice_name,gt_slice_name,stack_psnr,stack_ssim,stack_lpsnr,stack_lssim 
開發者ID:BPHO-Salk,項目名稱:PSSR,代碼行數:53,代碼來源:metric_gen.py

示例12: imsave_extensions

# 需要導入模塊: import tifffile [as 別名]
# 或者: from tifffile import imsave [as 別名]
def imsave_extensions() -> Tuple[str, ...]:
    """Valid extensions of files that imsave can write to.

    Returns
    ----------
    tuple
        Valid extensions of files that imsave can write to.
    """
    # import imageio
    # return tuple(set(x for f in imageio.formats for x in f.extensions))

    # The above method generates a lot of extensions that will fail.  This list
    # is a more realistic set, generated by trying to write a variety of numpy
    # arrays (skimage.data.camera, grass, and some random numpy arrays/shapes).
    # TODO: maybe write a proper imageio plugin.
    return (
        '.bmp',
        '.bsdf',
        '.bw',
        '.eps',
        '.gif',
        '.icns',
        '.ico',
        '.im',
        '.j2c',
        '.j2k',
        '.jfif',
        '.jp2',
        '.jpc',
        '.jpe',
        '.jpeg',
        '.jpf',
        '.jpg',
        '.jpx',
        '.lsm',
        '.mpo',
        '.npz',
        '.pbm',
        '.pcx',
        '.pgm',
        '.png',
        '.ppm',
        '.ps',
        '.rgb',
        '.rgba',
        '.sgi',
        '.stk',
        '.tga',
        '.tif',
        '.tiff',
    ) 
開發者ID:napari,項目名稱:napari,代碼行數:53,代碼來源:io.py

示例13: merge_dsm_tifs

# 需要導入模塊: import tifffile [as 別名]
# 或者: from tifffile import imsave [as 別名]
def merge_dsm_tifs(folder, count, outname):
    # loop on all input DSM images
    dsm_images = []
    cls_images = []
    for i in range(count):
        name = folder + '{:03d}'.format(i) + '_dsm.tif'
        if os.path.isfile(name):
            next_image = tifffile.imread(name)
            dsm_images.append(next_image)
        name = folder + '{:03d}'.format(i) + '_cls.tif'
        if os.path.isfile(name):
            next_image = tifffile.imread(name)
            cls_images.append(next_image)

    # compute median value for each pixel
    print('Length = ', len(dsm_images))
    dsm_images = np.array(dsm_images)
    cls_images = np.array(cls_images)
    print(dsm_images.shape)
    count = dsm_images.shape[0]
    ydim = dsm_images.shape[1]
    xdim = dsm_images.shape[2]
    median_dsm = np.zeros((ydim, xdim), dtype=np.float32)
    median_cls = np.zeros((ydim, xdim), dtype=np.uint8)
    for i in range(ydim):
        for j in range(xdim):
            pixel = dsm_images[:, i, j]
            pixel = pixel[pixel != NO_DATA]
            count = pixel.shape[0]
            if (count > 0):
                median_dsm[i, j] = np.median(pixel)
            else:
                median_dsm[i, j] = NO_DATA
            pixel = cls_images[:, i, j]
            median_cls[i, j] = get_most_frequent_category(pixel)

    # fill any remaining voids with the max value
    median_dsm[median_dsm == NO_DATA] = median_dsm.max()  # set to max height

    # convert CLS image to LAS conventions
    median_cls = sequential_to_las_labels(median_cls)

    # write median images
    tifffile.imsave(outname + '_DSM.tif', median_dsm)
    tifffile.imsave(outname + '_CLS.tif', median_cls)

    # write median images as uint8 tif for visualization
    median_u8_image = median_dsm - np.min(median_dsm)
    median_u8_image = np.uint8(np.round((median_u8_image / np.max(median_u8_image)) * 255))
    tifffile.imsave(outname + '_stereo_rgb.tif', median_u8_image)
    median_cls_rgb = las_to_sequential_labels(median_cls)
    median_cls_rgb = category_to_color(median_cls_rgb)
    tifffile.imsave(outname + '_segmentation_rgb.tif', median_cls_rgb)

    return median_dsm, median_cls


# main program to demonstrate a baseline MVS algorithm 
開發者ID:pubgeo,項目名稱:dfc2019,代碼行數:60,代碼來源:test-mvs.py


注:本文中的tifffile.imsave方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。