本文整理匯總了Python中tifffile.imsave方法的典型用法代碼示例。如果您正苦於以下問題:Python tifffile.imsave方法的具體用法?Python tifffile.imsave怎麽用?Python tifffile.imsave使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tifffile
的用法示例。
在下文中一共展示了tifffile.imsave方法的13個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: write3dTiff
# 需要導入模塊: import tifffile [as 別名]
# 或者: from tifffile import imsave [as 別名]
def write3dTiff(data,fName):
imsave(fName,data)
# def getTiffSize(fName):
# from PIL import Image
# img = Image.open(fName, 'r')
# depth = 0
# while True:
# try:
# img.seek(depth)
# except Exception as e:
# break
# depth += 1
#
# return (depth,)+img.size[::-1]
示例2: imsave
# 需要導入模塊: import tifffile [as 別名]
# 或者: from tifffile import imsave [as 別名]
def imsave(filename: str, data: np.ndarray):
"""Custom implementation of imsave to avoid skimage dependency.
Parameters
----------
filename : string
The path to write the file to.
data : np.ndarray
The image data.
"""
ext = os.path.splitext(filename)[1]
if ext in [".tif", ".tiff"]:
import tifffile
tifffile.imsave(filename, data)
else:
import imageio
imageio.imsave(filename, data)
示例3: save_rgb_image
# 需要導入模塊: import tifffile [as 別名]
# 或者: from tifffile import imsave [as 別名]
def save_rgb_image(self, image, filepath):
# size = [image.shape[0], image.shape[1]]
minval = np.amin(image)
maxval = np.amax(image)
image = (image - minval)/ (maxval - minval + 0.01)
image *= 255
image = image.astype(np.uint8)
# image = np.reshape(image, size)
tifffile.imsave(filepath, image)
示例4: writeData
# 需要導入模塊: import tifffile [as 別名]
# 或者: from tifffile import imsave [as 別名]
def writeData(filename, data):
"""Write image data to tif file
Arguments:
filename (str): file name
data (array): image data
Returns:
str: tif file name
"""
d = len(data.shape);
if d == 2:
#tiff.imsave(filename, data);
tiff.imsave(filename, data.transpose([1,0]));
elif d == 3:
#tiff.imsave(filename, data.transpose([2,0,1]));
tiff.imsave(filename, data.transpose([2,1,0]));
elif d == 4:
#tiffile (z,y,x,c)
#t = tiff.TiffWriter(filename, bigtiff = True);
#t.save(data.transpose([2,0,1,3]), photometric = 'minisblack', planarconfig = 'contig');
#t.save(data.transpose([2,1,0,3]), photometric = 'minisblack', planarconfig = 'contig')
#t.close();
tiff.imsave(filename, data.transpose([2,1,0,3]), photometric = 'minisblack', planarconfig = 'contig', bigtiff = True);
else:
raise RuntimeError('writing multiple channel data to tif not supported!');
return filename;
示例5: write_tiff_image
# 需要導入模塊: import tifffile [as 別名]
# 或者: from tifffile import imsave [as 別名]
def write_tiff_image(filename, image, compress=False):
""" Write image data to TIFF file
:param filename: name of file to write data to
:type filename: str
:param image: image data to write to file
:type image: numpy array
:param compress: whether to compress data. If `True`, lzma compression is used. Default is `False`
:type compress: bool
"""
if compress:
return tiff.imsave(filename, image, compress='lzma') # loseless compression, works very well on masks
return tiff.imsave(filename, image)
示例6: imsave
# 需要導入模塊: import tifffile [as 別名]
# 或者: from tifffile import imsave [as 別名]
def imsave(self):
"""
Use tifffile.imsave to write image2.tiff.
"""
file_name = os.path.join(self.data_dir, "image2.tiff")
data = numpy.array([[1, 2, 3],
[4, 5, 6]])
tifffile.imsave(file_name, data)
os.remove(file_name)
示例7: patches_and_cocoann
# 需要導入模塊: import tifffile [as 別名]
# 或者: from tifffile import imsave [as 別名]
def patches_and_cocoann(gt, outdir_rgb, outdir_mpan, count=1,create_anns=True):
gt.index = gt.ImageId
gt_flt = gt[gt.PolygonWKT_Geo != 'POLYGON EMPTY']
gv = gt_flt.ImageId.value_counts()
annotations = []
images = []
counter = count
for u in gt_flt.ImageId.unique():
try:
pan_sharpen_dir = ''.join([RAW_DIR, gt.name, '/Pan-Sharpen/'])
image_file = ''.join([pan_sharpen_dir, 'Pan-Sharpen', '_', u, '.tif'])
img_rgb = tifffile.imread(image_file)
if np.argmin(img_rgb.shape) == 0:
img_rgb = np.transpose(img_rgb, (1, 2, 0))
img_rgb = img_rgb[:, :, [3, 2, 1, 0]]
img_mpan = get_pan_sharpend(''.join([RAW_DIR, gt.name, '/']), u)
except:
print('load error..', u)
continue
if gv[u] > 1:
poly = gt.loc[u].PolygonWKT_Pix.apply(lambda x: loads(x)).values.tolist()
else:
poly = [loads(gt.loc[u].PolygonWKT_Pix)]
mask = util.mask_for_polygons(poly, im_size=imsize)
img_patches_rgb, mask_patches, kp = patch_creator.create(img=img_rgb, mask=mask, nonzero=True)
img_patches_mpan, _, _ = patch_creator.create(img=img_mpan, mask=mask, nonzero=True)
for i, k in enumerate(kp.keys()):
file_name_rgb = os.path.join(outdir_rgb, ''.join([u, '_', str(k), '.tif']))
file_name_mpan = os.path.join(outdir_mpan, ''.join([u, '_', str(k), '.tif']))
if create_anns:
anns, images_d, counter = create_coco_anns(file_name_rgb, counter, mask_patches[i].squeeze())
annotations.extend(anns)
images.extend(images_d)
tifffile.imsave(file_name_mpan, img_patches_mpan[i].astype('uint16'))
tifffile.imsave(file_name_rgb, img_patches_rgb[i].astype('uint16'))
if DEBUG:
break
return annotations, images, counter
示例8: save_disparity_image
# 需要導入模塊: import tifffile [as 別名]
# 或者: from tifffile import imsave [as 別名]
def save_disparity_image(self, image, filepath):
size = [image.shape[0], image.shape[1]]
minval = -self.dmax
maxval = self.dmax
image = (image - minval)/ (maxval - minval + 0.01)
image[image < 0.0] = 0.0
image[image > 1.0] = 1.0
image *= 255
image = image.astype(np.uint8)
image = np.reshape(image, size)
tifffile.imsave(filepath, image)
示例9: write_file
# 需要導入模塊: import tifffile [as 別名]
# 或者: from tifffile import imsave [as 別名]
def write_file(f, img):
"""
Write a file f.
"""
img = np.squeeze(img)
if f[-4:] == 'tiff' or f[-3:] == 'tif':
tifffile.imsave(f, img)
else:
img = np.floor(img + 0.5)
img[img < 0] = 0
img[img > 255] = 255
img = np.asarray(img, dtype=np.uint8)
imageio.imwrite(f, img)
示例10: _save_registered_frames
# 需要導入模塊: import tifffile [as 別名]
# 或者: from tifffile import imsave [as 別名]
def _save_registered_frames(frames, save_name, save_fmt, verbose=False):
"""
Save. Only use for debugging.
Parameters
----------
Returns
-------
"""
if verbose:
print(' Saving...')
try: # this is ugly
import tifffile
except ImportError:
try:
from sima.misc import tifffile
except ImportError:
if verbose:
print(' Cannot find tifffile')
if save_fmt == 'singles':
for idx in range(frames.shape[0]):
tifffile.imsave(
save_name + '_' + '{number:05d}'.format(number=idx) +
'_DFTreg.tif', frames[idx].astype(np.uint16))
if save_fmt == 'mptiff':
tifffile.imsave(save_name + '_DFTreg.tif',
frames.astype(np.uint16))
elif save_fmt == 'bigtiff':
tifffile.imsave(save_name + '_DFTreg.tif',
frames.astype(np.uint16), bigtiff=True)
示例11: stack_process
# 需要導入模塊: import tifffile [as 別名]
# 或者: from tifffile import imsave [as 別名]
def stack_process(pred, bilinear, gt, offset_frames=0):
stack_pred = PIL.Image.open(pred)
stack_bilinear = PIL.Image.open(bilinear)
stack_gt = PIL.Image.open(gt)
stem_pred = Path(pred).stem
stem_bilinear = Path(bilinear).stem
stem_gt = Path(gt).stem
frames = stack_pred.n_frames
stack_psnr = []
stack_lpsnr = []
stack_ssim = []
stack_lssim = []
pred_slice_name = []
bilinear_slice_name = []
gt_slice_name = []
#y_norm1s = []
#x1_norms = []
#y_norm2s = []
#x2_norms = []
for i in range(frames):
stack_pred.seek(i)
stack_bilinear.seek(i) if frames == 1 else stack_bilinear.seek(i+offset_frames)
stack_gt.seek(i) if frames == 1 else stack_gt.seek(i+offset_frames)
x1 = np.array(stack_pred).astype(np.float32)
x2 = np.array(stack_bilinear).astype(np.float32)
y = np.array(stack_gt).astype(np.float32)
psnr, ssim, l_psnr, l_ssim, y_norm1, x1_norm, y_norm2, x2_norm = slice_process(x1, x2, y)
stack_psnr.append(psnr)
stack_lpsnr.append(l_psnr)
stack_ssim.append(ssim)
stack_lssim.append(l_ssim)
pred_slice_name.append(f'{stem_pred}_z{i}.tif')
bilinear_slice_name.append(f'{stem_bilinear}_z{i+offset_frames}.tif')
gt_slice_name.append(f'{stem_gt}_z{i+offset_frames}.tif')
#y_norm1s.append(np.array(y_norm1).copy())
#x1_norms.append(np.array(x1_norm).copy())
#y_norm2s.append(np.array(y_norm2).copy())
#x2_norms.append(np.array(x2_norm).copy())
#tifffile.imsave(str(exp_dir/f"{stem}_GTnormtopred.tif"), np.stack(y_norm1s).astype(np.float32))
#tifffile.imsave(str(exp_dir/f"{stem}_prednorm.tif"), np.stack(x1_norms).astype(np.float32))
#tifffile.imsave(str(exp_dir/f"{stem}_GTnormtobilinear.tif"), np.stack(y_norm2s).astype(np.float32))
#tifffile.imsave(str(exp_dir/f"{stem}_bilinearnorm.tif"), np.stack(x2_norms).astype(np.float32))
return pred_slice_name,bilinear_slice_name,gt_slice_name,stack_psnr,stack_ssim,stack_lpsnr,stack_lssim
示例12: imsave_extensions
# 需要導入模塊: import tifffile [as 別名]
# 或者: from tifffile import imsave [as 別名]
def imsave_extensions() -> Tuple[str, ...]:
"""Valid extensions of files that imsave can write to.
Returns
----------
tuple
Valid extensions of files that imsave can write to.
"""
# import imageio
# return tuple(set(x for f in imageio.formats for x in f.extensions))
# The above method generates a lot of extensions that will fail. This list
# is a more realistic set, generated by trying to write a variety of numpy
# arrays (skimage.data.camera, grass, and some random numpy arrays/shapes).
# TODO: maybe write a proper imageio plugin.
return (
'.bmp',
'.bsdf',
'.bw',
'.eps',
'.gif',
'.icns',
'.ico',
'.im',
'.j2c',
'.j2k',
'.jfif',
'.jp2',
'.jpc',
'.jpe',
'.jpeg',
'.jpf',
'.jpg',
'.jpx',
'.lsm',
'.mpo',
'.npz',
'.pbm',
'.pcx',
'.pgm',
'.png',
'.ppm',
'.ps',
'.rgb',
'.rgba',
'.sgi',
'.stk',
'.tga',
'.tif',
'.tiff',
)
示例13: merge_dsm_tifs
# 需要導入模塊: import tifffile [as 別名]
# 或者: from tifffile import imsave [as 別名]
def merge_dsm_tifs(folder, count, outname):
# loop on all input DSM images
dsm_images = []
cls_images = []
for i in range(count):
name = folder + '{:03d}'.format(i) + '_dsm.tif'
if os.path.isfile(name):
next_image = tifffile.imread(name)
dsm_images.append(next_image)
name = folder + '{:03d}'.format(i) + '_cls.tif'
if os.path.isfile(name):
next_image = tifffile.imread(name)
cls_images.append(next_image)
# compute median value for each pixel
print('Length = ', len(dsm_images))
dsm_images = np.array(dsm_images)
cls_images = np.array(cls_images)
print(dsm_images.shape)
count = dsm_images.shape[0]
ydim = dsm_images.shape[1]
xdim = dsm_images.shape[2]
median_dsm = np.zeros((ydim, xdim), dtype=np.float32)
median_cls = np.zeros((ydim, xdim), dtype=np.uint8)
for i in range(ydim):
for j in range(xdim):
pixel = dsm_images[:, i, j]
pixel = pixel[pixel != NO_DATA]
count = pixel.shape[0]
if (count > 0):
median_dsm[i, j] = np.median(pixel)
else:
median_dsm[i, j] = NO_DATA
pixel = cls_images[:, i, j]
median_cls[i, j] = get_most_frequent_category(pixel)
# fill any remaining voids with the max value
median_dsm[median_dsm == NO_DATA] = median_dsm.max() # set to max height
# convert CLS image to LAS conventions
median_cls = sequential_to_las_labels(median_cls)
# write median images
tifffile.imsave(outname + '_DSM.tif', median_dsm)
tifffile.imsave(outname + '_CLS.tif', median_cls)
# write median images as uint8 tif for visualization
median_u8_image = median_dsm - np.min(median_dsm)
median_u8_image = np.uint8(np.round((median_u8_image / np.max(median_u8_image)) * 255))
tifffile.imsave(outname + '_stereo_rgb.tif', median_u8_image)
median_cls_rgb = las_to_sequential_labels(median_cls)
median_cls_rgb = category_to_color(median_cls_rgb)
tifffile.imsave(outname + '_segmentation_rgb.tif', median_cls_rgb)
return median_dsm, median_cls
# main program to demonstrate a baseline MVS algorithm