本文整理匯總了Python中tifffile.TiffFile方法的典型用法代碼示例。如果您正苦於以下問題:Python tifffile.TiffFile方法的具體用法?Python tifffile.TiffFile怎麽用?Python tifffile.TiffFile使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tifffile
的用法示例。
在下文中一共展示了tifffile.TiffFile方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: dataSize
# 需要導入模塊: import tifffile [as 別名]
# 或者: from tifffile import TiffFile [as 別名]
def dataSize(filename, **args):
"""Returns size of data in tif file
Arguments:
filename (str): file name as regular expression
x,y,z (tuple): data range specifications
Returns:
tuple: data size
"""
t = tiff.TiffFile(filename);
d3 = len(t.pages);
d2 = t.pages[0].shape;
#d2 = (d2[0], d2[1]);
if len(d2) == 3:
d2 = (d2[2], d2[1], d2[0]);
else:
d2 = (d2[1], d2[0]);
if d3 > 1:
dims = d2 + (d3,);
else:
dims = d2;
return io.dataSizeFromDataRange(dims, **args);
示例2: dataZSize
# 需要導入模塊: import tifffile [as 別名]
# 或者: from tifffile import TiffFile [as 別名]
def dataZSize(filename, z = all, **args):
"""Returns z size of data in tif file
Arguments:
filename (str): file name as regular expression
z (tuple): z data range specification
Returns:
int: z data size
"""
t = tiff.TiffFile(filename);
d2 = t.pages[0].shape;
if len(d2) == 3:
return io.toDataSize(d2[0], r = z);
d3 = len(t.pages);
if d3 > 1:
return io.toDataSize(d3, r = z);
else:
return None;
示例3: _read_immediate
# 需要導入模塊: import tifffile [as 別名]
# 或者: from tifffile import TiffFile [as 別名]
def _read_immediate(self) -> np.ndarray:
# Load Tiff
with TiffFile(self._file) as tiff:
# Check each scene has the same shape
# If scene shape checking fails, use the specified scene and update
# operating shape
scenes = tiff.series
if not self._scene_shape_is_consistent(tiff, S=self.specific_s_index):
return scenes[self.specific_s_index].asarray()
# Read each scene and stack if single scene
if len(scenes) > 1:
return np.stack([s.asarray() for s in scenes])
# Else, return single scene
return tiff.asarray()
示例4: open_tiff
# 需要導入模塊: import tifffile [as 別名]
# 或者: from tifffile import TiffFile [as 別名]
def open_tiff(file, sktiff):
""" opens tiff with either ScanImageTiffReader or tifffile
returns tiff and its length
"""
if sktiff:
tif = TiffFile(file)
Ltif = len(tif.pages)
else:
tif = ScanImageTiffReader(file)
tsize = tif.shape()
if len(tsize) < 3:
# single page tiffs
Ltif = 1
else:
Ltif = tif.shape()[0]
return tif, Ltif
示例5: _lazy_init_metadata
# 需要導入模塊: import tifffile [as 別名]
# 或者: from tifffile import TiffFile [as 別名]
def _lazy_init_metadata(self) -> omexml.OMEXML:
with TiffFile(self._file) as tiff:
if self._metadata is None and tiff.is_ome:
description = tiff.pages[0].description.strip()
if not (
description.startswith("<?xml version=")
and description.endswith("</OME>")
):
raise ValueError(
f"Description does not conform to OME specification: "
f"{description[:100]}"
)
self._metadata = omexml.OMEXML(description)
return self._metadata
示例6: _imread
# 需要導入模塊: import tifffile [as 別名]
# 或者: from tifffile import TiffFile [as 別名]
def _imread(img: Path, scene: int, page: int) -> np.ndarray:
# Load Tiff
with TiffFile(img) as tiff:
# Get proper scene
scene = tiff.series[scene]
# Get proper page
page = scene.pages[page]
# Return numpy
return page.asarray()
示例7: _scene_shape_is_consistent
# 需要導入模塊: import tifffile [as 別名]
# 或者: from tifffile import TiffFile [as 別名]
def _scene_shape_is_consistent(tiff: TiffFile, S: int) -> bool:
scenes = tiff.series
operating_shape = scenes[0].shape
for scene in scenes:
if scene.shape != operating_shape:
log.info(
f"File contains variable dimensions per scene, "
f"selected scene: {S} for data "
f"retrieval."
)
return False
return True
示例8: dtype
# 需要導入模塊: import tifffile [as 別名]
# 或者: from tifffile import TiffFile [as 別名]
def dtype(self):
if self._dtype is None:
with TiffFile(self._file) as tiff:
self._dtype = tiff.pages[0].dtype
return self._dtype
示例9: load_tif_lazy
# 需要導入模塊: import tifffile [as 別名]
# 或者: from tifffile import TiffFile [as 別名]
def load_tif_lazy(fname):
with TiffFile(fname) as tif:
data = tif.asarray()
f = int(data.shape[0])
fmread = da.delayed(load_tif_perframe)
flist = [fmread(fname, i) for i in range(f)]
sample = flist[0].compute()
arr = [da.array.from_delayed(
fm, dtype=sample.dtype, shape=sample.shape) for fm in flist]
return da.array.stack(arr, axis=0)
示例10: readData
# 需要導入模塊: import tifffile [as 別名]
# 或者: from tifffile import TiffFile [as 別名]
def readData(filename, x = all, y = all, z = all, **args):
"""Read data from a single tif image or stack
Arguments:
filename (str): file name as regular expression
x,y,z (tuple): data range specifications
Returns:
array: image data
"""
dsize = dataSize(filename);
#print "dsize %s" % str(dsize);
if len(dsize) == 2:
data = tiff.imread(filename, key = 0);
#print "data.shape %s" % str(data.shape);
return io.dataToRange(data.transpose([1,0]), x = x, y = y);
#return io.dataToRange(data, x = x, y = y);
else:
if z is all:
data = tiff.imread(filename);
if data.ndim == 2:
# data = data
data = data.transpose([1,0]);
elif data.ndim == 3:
#data = data.transpose([1,2,0]);
data = data.transpose([2,1,0]);
elif data.ndim == 4: # multi channel image
#data = data.transpose([1,2,0,3]);
data = data.transpose([2,1,0,3]);
else:
raise RuntimeError('readData: dimension %d not supproted!' % data.ndim)
return io.dataToRange(data, x = x, y = y, z = all);
else: #optimize for z ranges
ds = io.dataSizeFromDataRange(dsize, x = x, y = y, z = z);
t = tiff.TiffFile(filename);
p = t.pages[0];
data = numpy.zeros(ds, dtype = p.dtype);
rz = io.toDataRange(dsize[2], r = z);
#print "test"
#print rz;
#print dsize
for i in range(rz[0], rz[1]):
xydata = t.pages[i].asarray();
#data[:,:,i-rz[0]] = io.dataToRange(xydata, x = x, y = y);
data[:,:,i-rz[0]] = io.dataToRange(xydata.transpose([1,0]), x = x, y = y);
return data
示例11: _read_delayed
# 需要導入模塊: import tifffile [as 別名]
# 或者: from tifffile import TiffFile [as 別名]
def _read_delayed(self) -> da.core.Array:
# Load Tiff
with TiffFile(self._file) as tiff:
# Check each scene has the same shape
# If scene shape checking fails, use the specified scene and update
# operating shape
scenes = tiff.series
operating_shape = scenes[0].shape
if not self._scene_shape_is_consistent(tiff, S=self.specific_s_index):
operating_shape = scenes[self.specific_s_index].shape
scenes = [scenes[self.specific_s_index]]
# Get sample yx plane
sample = scenes[0].pages[0].asarray()
# Combine length of scenes and operating shape
# Replace YX dims with empty dimensions
operating_shape = (len(scenes), *operating_shape)
operating_shape = operating_shape[:-2] + (1, 1)
# Make ndarray for lazy arrays to fill
lazy_arrays = np.ndarray(operating_shape, dtype=object)
for all_page_index, (np_index, _) in enumerate(np.ndenumerate(lazy_arrays)):
# Scene index is the first index in np_index
scene_index = np_index[0]
# This page index is current enumeration divided by scene index + 1
# For example if the image has 10 Z slices and 5 scenes, there
# would be 50 total pages
this_page_index = all_page_index // (scene_index + 1)
# Fill the numpy array with the delayed arrays
lazy_arrays[np_index] = da.from_delayed(
delayed(TiffReader._imread)(
self._file, scene_index, this_page_index
),
shape=sample.shape,
dtype=sample.dtype,
)
# Convert the numpy array of lazy readers into a dask array
data = da.block(lazy_arrays.tolist())
# Only return the scene dimension if multiple scenes are present
if len(scenes) == 1:
data = data[0, :]
return data
示例12: dims
# 需要導入模塊: import tifffile [as 別名]
# 或者: from tifffile import TiffFile [as 別名]
def dims(self) -> str:
if self._dims is None:
# Get a single scenes dimensions in order
with TiffFile(self._file) as tiff:
single_scene_dims = tiff.series[0].pages.axes
# We can sometimes trust the dimension info in the image
if all([d in Dimensions.DefaultOrder for d in single_scene_dims]):
# Add scene dimension only if there are multiple scenes
if len(tiff.series) == 1:
self._dims = single_scene_dims
else:
self._dims = f"{Dimensions.Scene}{single_scene_dims}"
# Sometimes the dimension info is wrong in certain dimensions, so guess
# that dimension
else:
guess = self.guess_dim_order(tiff.series[0].pages.shape)
best_guess = []
for dim_from_meta in single_scene_dims:
if dim_from_meta in Dimensions.DefaultOrder:
best_guess.append(dim_from_meta)
else:
appended_dim = False
for guessed_dim in guess:
if guessed_dim not in best_guess:
best_guess.append(guessed_dim)
appended_dim = True
log.info(
f"Unsure how to handle dimension: "
f"{dim_from_meta}. "
f"Replaced with guess: {guessed_dim}"
)
break
# All of our guess dims were already in the dim list,
# append the dim read from meta
if not appended_dim:
best_guess.append(dim_from_meta)
best_guess = "".join(best_guess)
# Add scene dimension only if there are multiple scenes
if len(tiff.series) == 1:
self._dims = best_guess
else:
self._dims = f"{Dimensions.Scene}{best_guess}"
return self._dims