本文整理匯總了Python中theano.tensor.tensor3方法的典型用法代碼示例。如果您正苦於以下問題:Python tensor.tensor3方法的具體用法?Python tensor.tensor3怎麽用?Python tensor.tensor3使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類theano.tensor
的用法示例。
在下文中一共展示了tensor.tensor3方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: build_encoder_bi
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import tensor3 [as 別名]
def build_encoder_bi(tparams, options):
"""
build bidirectional encoder, given pre-computed word embeddings
"""
# word embedding (source)
embedding = tensor.tensor3('embedding', dtype='float32')
embeddingr = embedding[::-1]
x_mask = tensor.matrix('x_mask', dtype='float32')
xr_mask = x_mask[::-1]
# encoder
proj = get_layer(options['encoder'])[1](tparams, embedding, options,
prefix='encoder',
mask=x_mask)
projr = get_layer(options['encoder'])[1](tparams, embeddingr, options,
prefix='encoder_r',
mask=xr_mask)
ctx = tensor.concatenate([proj[0][-1], projr[0][-1]], axis=1)
return embedding, x_mask, ctx
# some utilities
示例2: __init__
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import tensor3 [as 別名]
def __init__(self, input_dim, output_dim,
init='glorot_uniform', inner_init='orthogonal', activation='sigmoid', weights=None,
truncate_gradient=-1, return_sequences=False):
super(SimpleRNN, self).__init__()
self.init = initializations.get(init)
self.inner_init = initializations.get(inner_init)
self.input_dim = input_dim
self.output_dim = output_dim
self.truncate_gradient = truncate_gradient
self.activation = activations.get(activation)
self.return_sequences = return_sequences
self.input = T.tensor3()
self.W = self.init((self.input_dim, self.output_dim))
self.U = self.inner_init((self.output_dim, self.output_dim))
self.b = shared_zeros((self.output_dim))
self.params = [self.W, self.U, self.b]
if weights is not None:
self.set_weights(weights)
示例3: test_shape
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import tensor3 [as 別名]
def test_shape():
input_var = T.tensor3('input')
target_var = T.imatrix('target')
output_var, _, _ = memory_augmented_neural_network(
input_var, target_var,
batch_size=16,
nb_class=5,
memory_shape=(128, 40),
controller_size=200,
input_size=20 * 20,
nb_reads=4)
posterior_fn = theano.function([input_var, target_var], output_var)
test_input = np.random.rand(16, 50, 20 * 20)
test_target = np.random.randint(5, size=(16, 50)).astype('int32')
test_input_invalid_batch_size = np.random.rand(16 + 1, 50, 20 * 20)
test_input_invalid_depth = np.random.rand(16, 50, 20 * 20 - 1)
test_output = posterior_fn(test_input, test_target)
assert test_output.shape == (16, 50, 5)
with pytest.raises(ValueError) as e_info:
posterior_fn(test_input_invalid_batch_size, test_target)
with pytest.raises(ValueError) as e_info:
posterior_fn(test_input_invalid_depth, test_target)
示例4: test_perform
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import tensor3 [as 別名]
def test_perform(self):
x = tensor.matrix()
y = tensor.scalar()
f = function([x, y], fill_diagonal(x, y))
for shp in [(8, 8), (5, 8), (8, 5)]:
a = numpy.random.rand(*shp).astype(config.floatX)
val = numpy.cast[config.floatX](numpy.random.rand())
out = f(a, val)
# We can't use numpy.fill_diagonal as it is bugged.
assert numpy.allclose(numpy.diag(out), val)
assert (out == val).sum() == min(a.shape)
# test for 3d tensor
a = numpy.random.rand(3, 3, 3).astype(config.floatX)
x = tensor.tensor3()
y = tensor.scalar()
f = function([x, y], fill_diagonal(x, y))
val = numpy.cast[config.floatX](numpy.random.rand() + 10)
out = f(a, val)
# We can't use numpy.fill_diagonal as it is bugged.
assert out[0, 0, 0] == val
assert out[1, 1, 1] == val
assert out[2, 2, 2] == val
assert (out == val).sum() == min(a.shape)
示例5: setUp
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import tensor3 [as 別名]
def setUp(self):
super(Test_local_elemwise_alloc, self).setUp()
self.fast_run_mode = mode_with_gpu
# self.vec = tensor.vector('vec', dtype=dtype)
# self.mat = tensor.matrix('mat', dtype=dtype)
# self.tens = tensor.tensor3('tens', dtype=dtype)
# self.alloc_wo_dep = basic_ops.gpu_alloc(self.vec, 2, 2)
# self.alloc_w_dep = basic_ops.gpu_alloc(self.vec, *self.mat.shape)
self.alloc_wo_dep = basic_ops.gpu_alloc(self.vec, 2, 2)
self.alloc_w_dep = basic_ops.gpu_alloc(self.vec, *self.mat.shape)
self.alloc_w_dep_tens = basic_ops.gpu_alloc(
self.vec,
self.tens.shape[0],
self.tens.shape[1]
)
self.tv_wo_dep = basic_ops.gpu_alloc(self.vec, 5, 5)
self.tm_wo_dep = basic_ops.gpu_alloc(self.mat, 5, 5, 5)
self.s = tensor.iscalar('s')
self.tv_w_dep = basic_ops.gpu_alloc(self.vec, self.s, self.s)
self.tm_w_dep = basic_ops.gpu_alloc(self.mat, 5, 5, 5)
self.row = tensor.row(dtype=self.dtype)
self.o = basic_ops.gpu_alloc(self.row, 5, 5)
示例6: test_correct_answer
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import tensor3 [as 別名]
def test_correct_answer(self):
a = T.matrix()
b = T.matrix()
x = T.tensor3()
y = T.tensor3()
A = numpy.cast[theano.config.floatX](numpy.random.rand(5, 3))
B = numpy.cast[theano.config.floatX](numpy.random.rand(7, 2))
X = numpy.cast[theano.config.floatX](numpy.random.rand(5, 6, 1))
Y = numpy.cast[theano.config.floatX](numpy.random.rand(1, 9, 3))
make_list((3., 4.))
c = make_list((a, b))
z = make_list((x, y))
fc = theano.function([a, b], c)
fz = theano.function([x, y], z)
self.assertTrue((m == n).all() for m, n in zip(fc(A, B), [A, B]))
self.assertTrue((m == n).all() for m, n in zip(fz(X, Y), [X, Y]))
示例7: testConv1DLayer
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import tensor3 [as 別名]
def testConv1DLayer():
rng = numpy.random.RandomState()
input = T.tensor3('input')
#windowSize = 3
n_in = 4
n_hiddens = [10,10,5]
#convR = Conv1DR(rng, input, n_in, n_hiddens, windowSize/2)
convLayer = Conv1DLayer(rng, input, n_in, 5, halfWinSize=1)
#f = theano.function([input],convR.output)
#f = theano.function([input],[convLayer.output, convLayer.out2, convLayer.convout, convLayer.out3])
f = theano.function([input], convLayer.output)
numOfProfiles=6
seqLen = 10
profile = numpy.random.uniform(0,1, (numOfProfiles, seqLen,n_in))
out = f(profile)
print out.shape
print out
示例8: TestMidpointFeature
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import tensor3 [as 別名]
def TestMidpointFeature():
x = T.tensor3('x')
y = MidpointFeature(x)
f= theano.function([x], y)
a = np.random.uniform(0, 1, (3, 10, 2)).astype(theano.config.floatX)
b,c = f(a)
print c
#return
print '**********0*********'
print a[0]
print b[0][0]
print '********4*******'
print a[0]
print b[0][4]
print '**********9******'
print a[0]
print b[0][9]
示例9: Compatible
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import tensor3 [as 別名]
def Compatible(list1, list2):
if len(list1) != len(list2):
return False
for l1, l2 in zip(list1, list2):
if type(l1.get_value()) != type(l2):
return False
if np.isscalar(l1.get_value()):
continue
if l1.get_value().shape != l2.shape:
return False
return True
##generate the tile of a small tensor x, the first 2 dims will be expanded
## x is a small matrix or tensor3 to be tiled, y is a tuple of 2 elements
## This function generates a tile of x by copying it y*y times
## The resultant matrix shall have dimension ( x.shape[0]*y, x.shape[1]*y), consisting of y*y copies of x
示例10: __init__
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import tensor3 [as 別名]
def __init__(self, activation, dims=None, **kwargs):
super(SpeechBottom, self).__init__(**kwargs)
self.num_features = self.input_dims['recordings']
if activation is None:
activation = Tanh()
if dims:
child = MLP([activation] * len(dims),
[self.num_features] + dims,
name="bottom")
self.output_dim = child.output_dim
else:
child = Identity(name='bottom')
self.output_dim = self.num_features
self.children.append(child)
self.mask = tensor.matrix('recordings_mask')
self.batch_inputs = {
'recordings': tensor.tensor3('recordings')}
self.single_inputs = {
'recordings': tensor.matrix('recordings')}
示例11: test
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import tensor3 [as 別名]
def test(self):
X = tensor.tensor3('X')
out, H2, out_2, H = self.recurrent_example.apply(
inputs=X, mask=None)
x_val = numpy.ones((5, 1, 1), dtype=theano.config.floatX)
h = H.eval({X: x_val})
h2 = H2.eval({X: x_val})
out_eval = out.eval({X: x_val})
out_2_eval = out_2.eval({X: x_val})
# This also implicitly tests that the initial states are zeros
assert_allclose(h, x_val.cumsum(axis=0))
assert_allclose(h2, .5 * (numpy.arange(5).reshape((5, 1, 1)) + 1))
assert_allclose(h * 10, out_eval)
assert_allclose(h2 * 10, out_2_eval)
示例12: test_saved_inner_graph
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import tensor3 [as 別名]
def test_saved_inner_graph():
"""Make sure that the original inner graph is saved."""
x = tensor.tensor3()
recurrent = SimpleRecurrent(dim=3, activation=Tanh())
y = recurrent.apply(x)
application_call = get_application_call(y)
assert application_call.inner_inputs
assert application_call.inner_outputs
cg = ComputationGraph(application_call.inner_outputs)
# Check that the inner scan graph is annotated
# with `recurrent.apply`
assert len(VariableFilter(applications=[recurrent.apply])(cg)) == 3
# Check that the inner graph is equivalent to the one
# produced by a stand-alone of `recurrent.apply`
assert is_same_graph(application_call.inner_outputs[0],
recurrent.apply(*application_call.inner_inputs,
iterate=False))
示例13: test_super_in_recurrent_overrider
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import tensor3 [as 別名]
def test_super_in_recurrent_overrider():
# A regression test for the issue #475
class SimpleRecurrentWithContext(SimpleRecurrent):
@application(contexts=['context'])
def apply(self, context, *args, **kwargs):
kwargs['inputs'] += context
return super(SimpleRecurrentWithContext, self).apply(*args,
**kwargs)
@apply.delegate
def apply_delegate(self):
return super(SimpleRecurrentWithContext, self).apply
brick = SimpleRecurrentWithContext(100, Tanh())
inputs = tensor.tensor3('inputs')
context = tensor.matrix('context').dimshuffle('x', 0, 1)
brick.apply(context, inputs=inputs)
示例14: build_model
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import tensor3 [as 別名]
def build_model(tparams, options):
alphaHiddenDimSize = options['alphaHiddenDimSize']
betaHiddenDimSize = options['betaHiddenDimSize']
x = T.tensor3('x', dtype=config.floatX)
reverse_emb_t = x[::-1]
reverse_h_a = gru_layer(tparams, reverse_emb_t, 'a', alphaHiddenDimSize)[::-1] * 0.5
reverse_h_b = gru_layer(tparams, reverse_emb_t, 'b', betaHiddenDimSize)[::-1] * 0.5
preAlpha = T.dot(reverse_h_a, tparams['w_alpha']) + tparams['b_alpha']
preAlpha = preAlpha.reshape((preAlpha.shape[0], preAlpha.shape[1]))
alpha = (T.nnet.softmax(preAlpha.T)).T
beta = T.tanh(T.dot(reverse_h_b, tparams['W_beta']) + tparams['b_beta'])
return x, alpha, beta
示例15: build_encoder
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import tensor3 [as 別名]
def build_encoder(tparams, options):
"""
build an encoder, given pre-computed word embeddings
"""
# word embedding (source)
embedding = tensor.tensor3('embedding', dtype='float32')
x_mask = tensor.matrix('x_mask', dtype='float32')
# encoder
proj = get_layer(options['encoder'])[1](tparams, embedding, options,
prefix='encoder',
mask=x_mask)
ctx = proj[0][-1]
return embedding, x_mask, ctx