當前位置: 首頁>>代碼示例>>Python>>正文


Python tensor.tensor方法代碼示例

本文整理匯總了Python中theano.tensor.tensor方法的典型用法代碼示例。如果您正苦於以下問題:Python tensor.tensor方法的具體用法?Python tensor.tensor怎麽用?Python tensor.tensor使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在theano.tensor的用法示例。


在下文中一共展示了tensor.tensor方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: local_csm_properties_csm

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import tensor [as 別名]
def local_csm_properties_csm(node):
    """
    If we find csm_properties(CSM(*args)), then we can replace that with the
    *args directly.

    """
    if node.op == csm_properties:
        csm, = node.inputs
        if csm.owner and (csm.owner.op == CSC or csm.owner.op == CSR):
            # csm.owner.inputs could be broadcastable. In that case, we have
            # to adjust the broadcasting flag here.
            ret_var = [theano.tensor.patternbroadcast(i, o.broadcastable)
                       for i, o in izip(csm.owner.inputs, node.outputs)]
            return ret_var

    return False 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:18,代碼來源:opt.py

示例2: make_node

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import tensor [as 別名]
def make_node(self, x, y):
        x, y = sparse.as_sparse_variable(x), tensor.as_tensor_variable(y)
        out_dtype = scalar.upcast(x.type.dtype, y.type.dtype)
        if self.inplace:
            assert out_dtype == y.dtype

        indices, indptr, data = csm_indices(x), csm_indptr(x), csm_data(x)
        # We either use CSC or CSR depending on the format of input
        assert self.format == x.type.format
        # The magic number two here arises because L{scipy.sparse}
        # objects must be matrices (have dimension 2)
        assert y.type.ndim == 2
        out = tensor.TensorType(dtype=out_dtype,
                                broadcastable=y.type.broadcastable)()
        return gof.Apply(self,
                         [data, indices, indptr, y],
                         [out]) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:19,代碼來源:opt.py

示例3: __generalized_sd_test

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import tensor [as 別名]
def __generalized_sd_test(self, theanop, symbolicType, testOp, scipyType):

        scipy_ver = [int(n) for n in scipy.__version__.split('.')[:2]]

        if (bool(scipy_ver < [0, 13])):
            raise SkipTest("comparison operators need newer release of scipy")

        x = symbolicType()
        y = theano.tensor.matrix()

        op = theanop(x, y)

        f = theano.function([x, y], op)

        m1 = scipyType(random_lil((10, 40), config.floatX, 3))
        m2 = self._rand_ranged(1000, -1000, [10, 40])

        self.assertTrue(numpy.array_equal(f(m1, m2).data, testOp(m1, m2).data)) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:20,代碼來源:test_basic.py

示例4: test_equality_case

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import tensor [as 別名]
def test_equality_case(self):
        """
        Test assuring normal behaviour when values
        in the matrices are equal
        """

        scipy_ver = [int(n) for n in scipy.__version__.split('.')[:2]]

        if (bool(scipy_ver < [0, 13])):
            raise SkipTest("comparison operators need newer release of scipy")

        x = sparse.csc_matrix()
        y = theano.tensor.matrix()

        m1 = sp.csc_matrix((2, 2), dtype=theano.config.floatX)
        m2 = numpy.asarray([[0, 0], [0, 0]], dtype=theano.config.floatX)

        for func in self.testsDic:

            op = func(y, x)
            f = theano.function([y, x], op)

            self.assertTrue(numpy.array_equal(f(m2, m1),
                                              self.testsDic[func](m2, m1))) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:26,代碼來源:test_basic.py

示例5: test_csm

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import tensor [as 別名]
def test_csm(self):
        sp_types = {'csc': sp.csc_matrix,
                    'csr': sp.csr_matrix}

        for format in ['csc', 'csr']:
            for dtype in ['float32', 'float64']:
                x = tensor.tensor(dtype=dtype, broadcastable=(False,))
                y = tensor.ivector()
                z = tensor.ivector()
                s = tensor.ivector()
                f = theano.function([x, y, z, s], CSM(format)(x, y, z, s))

                spmat = sp_types[format](random_lil((4, 3), dtype, 3))

                res = f(spmat.data, spmat.indices, spmat.indptr,
                        numpy.asarray(spmat.shape, 'int32'))

                assert numpy.all(res.data == spmat.data)
                assert numpy.all(res.indices == spmat.indices)
                assert numpy.all(res.indptr == spmat.indptr)
                assert numpy.all(res.shape == spmat.shape) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:23,代碼來源:test_basic.py

示例6: test_csc_dense

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import tensor [as 別名]
def test_csc_dense(self):
        x = theano.sparse.csc_matrix('x')
        y = theano.tensor.matrix('y')
        v = theano.tensor.vector('v')

        for (x, y, x_v, y_v) in [(x, y, self.x_csc, self.y),
                                 (x, v, self.x_csc, self.v_100),
                                 (v, x, self.v_10, self.x_csc)]:

            f_a = theano.function([x, y], theano.sparse.dot(x, y))
            f_b = lambda x, y: x * y

            utt.assert_allclose(f_a(x_v, y_v), f_b(x_v, y_v))

            # Test infer_shape
            self._compile_and_check([x, y], [theano.sparse.dot(x, y)],
                                    [x_v, y_v],
                                    (Dot, Usmm, UsmmCscDense)) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:20,代碼來源:test_basic.py

示例7: test_int32_dtype

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import tensor [as 別名]
def test_int32_dtype(self):
        # Reported on the theano-user mailing-list:
        # https://groups.google.com/d/msg/theano-users/MT9ui8LtTsY/rwatwEF9zWAJ
        size = 9
        intX = 'int32'

        C = tensor.matrix('C', dtype=intX)
        I = tensor.matrix('I', dtype=intX)

        fI = I.flatten()
        data = tensor.ones_like(fI)
        indptr = tensor.arange(data.shape[0] + 1, dtype='int32')

        m1 = sparse.CSR(data, fI, indptr, (8, size))
        m2 = sparse.dot(m1, C)
        y = m2.reshape(shape=(2, 4, 9), ndim=3)

        f = theano.function(inputs=[I, C], outputs=y)
        i = numpy.asarray([[4, 3, 7, 7], [2, 8, 4, 5]], dtype=intX)
        a = numpy.asarray(numpy.random.randint(0, 100, (size, size)),
                          dtype=intX)
        f(i, a) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:24,代碼來源:test_basic.py

示例8: test_grad

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import tensor [as 別名]
def test_grad(self):
        for format in sparse.sparse_formats:
            for i_dtype in sparse.float_dtypes:
                for o_dtype in tensor.float_dtypes:
                    if o_dtype == 'float16':
                        # Don't test float16 output.
                        continue
                    _, data = sparse_random_inputs(
                        format,
                        shape=(4, 7),
                        out_dtype=i_dtype)

                    eps = None
                    if o_dtype == 'float32':
                        eps = 1e-2

                    verify_grad_sparse(Cast(o_dtype), data, eps=eps) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:19,代碼來源:test_basic.py

示例9: test_mul_s_v

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import tensor [as 別名]
def test_mul_s_v(self):
        sp_types = {'csc': sp.csc_matrix,
                    'csr': sp.csr_matrix}

        for format in ['csr', 'csc']:
            for dtype in ['float32', 'float64']:
                x = theano.sparse.SparseType(format, dtype=dtype)()
                y = tensor.vector(dtype=dtype)
                f = theano.function([x, y], mul_s_v(x, y))

                spmat = sp_types[format](random_lil((4, 3), dtype, 3))
                mat = numpy.asarray(numpy.random.rand(3), dtype=dtype)

                out = f(spmat, mat)

                utt.assert_allclose(spmat.toarray() * mat, out.toarray()) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:18,代碼來源:test_basic.py

示例10: test_structured_add_s_v

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import tensor [as 別名]
def test_structured_add_s_v(self):
        sp_types = {'csc': sp.csc_matrix,
                    'csr': sp.csr_matrix}

        for format in ['csr', 'csc']:
            for dtype in ['float32', 'float64']:
                x = theano.sparse.SparseType(format, dtype=dtype)()
                y = tensor.vector(dtype=dtype)
                f = theano.function([x, y], structured_add_s_v(x, y))

                spmat = sp_types[format](random_lil((4, 3), dtype, 3))
                spones = spmat.copy()
                spones.data = numpy.ones_like(spones.data)
                mat = numpy.asarray(numpy.random.rand(3), dtype=dtype)

                out = f(spmat, mat)

                utt.assert_allclose(as_ndarray(spones.multiply(spmat + mat)),
                                    out.toarray()) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:21,代碼來源:test_basic.py

示例11: _is_sparse_variable

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import tensor [as 別名]
def _is_sparse_variable(x):
    """

    Returns
    -------
    boolean
        True iff x is a L{SparseVariable} (and not a L{tensor.TensorType},
        for instance).

    """
    if not isinstance(x, gof.Variable):
        raise NotImplementedError("this function should only be called on "
                                  "*variables* (of type sparse.SparseType "
                                  "or tensor.TensorType, for instance), not ",
                                  x)
    return isinstance(x.type, SparseType) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:18,代碼來源:basic.py

示例12: as_sparse_or_tensor_variable

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import tensor [as 別名]
def as_sparse_or_tensor_variable(x, name=None):
    """
    Same as `as_sparse_variable` but if we can't make a
    sparse variable, we try to make a tensor variable.

    Parameters
    ----------
    x
        A sparse matrix.

    Returns
    -------
    SparseVariable or TensorVariable version of `x`

    """

    try:
        return as_sparse_variable(x, name)
    except (ValueError, TypeError):
        return theano.tensor.as_tensor_variable(x, name) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:22,代碼來源:basic.py

示例13: sp_ones_like

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import tensor [as 別名]
def sp_ones_like(x):
    """
    Construct a sparse matrix of ones with the same sparsity pattern.

    Parameters
    ----------
    x
        Sparse matrix to take the sparsity pattern.

    Returns
    -------
    A sparse matrix
        The same as `x` with data changed for ones.

    """
    # TODO: don't restrict to CSM formats
    data, indices, indptr, shape = csm_properties(x)
    return CSM(format=x.format)(tensor.ones_like(data), indices, indptr, shape) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:20,代碼來源:basic.py

示例14: sp_zeros_like

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import tensor [as 別名]
def sp_zeros_like(x):
    """
    Construct a sparse matrix of zeros.

    Parameters
    ----------
    x
        Sparse matrix to take the shape.

    Returns
    -------
    A sparse matrix
        The same as `x` with zero entries for all element.

    """

    # TODO: don't restrict to CSM formats
    _, _, indptr, shape = csm_properties(x)
    return CSM(format=x.format)(data=numpy.array([], dtype=x.type.dtype),
                                indices=numpy.array([], dtype='int32'),
                                indptr=tensor.zeros_like(indptr),
                                shape=shape) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:24,代碼來源:basic.py

示例15: make_node

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import tensor [as 別名]
def make_node(self, x):
        x = tensor.as_tensor_variable(x)
        if x.ndim > 2:
            raise TypeError(
                "Theano does not have sparse tensor types with more "
                "than 2 dimensions, but %s.ndim = %i" % (x, x.ndim))
        elif x.ndim == 1:
            x = x.dimshuffle('x', 0)
        elif x.ndim == 0:
            x = x.dimshuffle('x', 'x')
        else:
            assert x.ndim == 2

        return gof.Apply(self,
                         [x],
                         [SparseType(dtype=x.type.dtype,
                                     format=self.format)()]) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:19,代碼來源:basic.py


注:本文中的theano.tensor.tensor方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。