本文整理匯總了Python中theano.tensor.sum方法的典型用法代碼示例。如果您正苦於以下問題:Python tensor.sum方法的具體用法?Python tensor.sum怎麽用?Python tensor.sum使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類theano.tensor
的用法示例。
在下文中一共展示了tensor.sum方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: reduce_log_sum
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import sum [as 別名]
def reduce_log_sum(tensor, axis=None, guaranteed_finite=False):
"""
Sum probabilities in the log domain, i.e return
log(e^vec[0] + e^vec[1] + ...)
= log(e^x e^(vec[0]-x) + e^x e^(vec[1]-x) + ...)
= log(e^x [e^(vec[0]-x) + e^(vec[1]-x) + ...])
= log(e^x) + log(e^(vec[0]-x) + e^(vec[1]-x) + ...)
= x + log(e^(vec[0]-x) + e^(vec[1]-x) + ...)
For numerical stability, we choose x = max(vec)
Note that if x is -inf, that means all values are -inf,
so the answer should be -inf. In this case, choose x = 0
"""
maxval = T.max(tensor, axis)
maxval_full = T.max(tensor, axis, keepdims=True)
if not guaranteed_finite:
maxval = T.switch(T.isfinite(maxval), maxval, T.zeros_like(maxval))
maxval_full = T.switch(T.isfinite(maxval_full), maxval_full, T.zeros_like(maxval_full))
reduced_sum = T.sum(T.exp(tensor - maxval_full), axis)
logsum = maxval + T.log(reduced_sum)
return logsum
示例2: define_cost
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import sum [as 別名]
def define_cost(self, pred, y0, m0):
bsize = self.bsize
npix = int(np.prod(test_shape(y0)[1:]))
y0_target = y0.reshape((self.bsize, npix))
y0_mask = m0.reshape((self.bsize, npix))
pred = pred.reshape((self.bsize, npix))
p = pred * y0_mask
t = y0_target * y0_mask
d = (p - t)
nvalid_pix = T.sum(y0_mask, axis=1)
depth_cost = (T.sum(nvalid_pix * T.sum(d**2, axis=1))
- 0.5*T.sum(T.sum(d, axis=1)**2)) \
/ T.maximum(T.sum(nvalid_pix**2), 1)
return depth_cost
示例3: Linear
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import sum [as 別名]
def Linear(inp, inp_dim, outp_dim, vs, name="linear_layer", use_bias=True, initializer=None, bias_initializer=None):
if isinstance(inp, tuple):
assert isinstance(inp_dim, tuple)
# Build initializers which are aware of the real shape of the overall
# (unsplit) matrix.
real_inp_dim = sum(inp_dim)
initializer = partial(initializer or vs.default_initializer,
real_shape=(real_inp_dim, outp_dim))
try:
Ws = [vs.add_param("%s_W%i" % (name, i), (dim_i, outp_dim),
initializer=initializer)
for i, dim_i in enumerate(inp_dim)]
except TypeError, e:
raise RuntimeError(
"TypeError in vs initialization for split Gemm. Does the "
"initializer you provided (%s) support real_shape?"
% initializer, e)
outp = T.dot(inp[0], Ws[0])
for inp_i, W_i in zip(inp[1:], Ws[1:]):
# TODO inplace add?
outp += T.dot(inp_i, W_i)
示例4: __init__
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import sum [as 別名]
def __init__(self, data, n_sample, rng=None, item_key='item_id', sample_alpha=0.75, sample_store=10000000):
self.sample_alpha = sample_alpha
self.sample_store = sample_store
self.n_sample = n_sample
if rng is None:
self.rng = np.random.RandomState(1234)
else:
self.rng = rng
self.pop = data[item_key].value_counts() ** sample_alpha
self.pop = self.pop.cumsum() / self.pop.sum()
if self.sample_store:
self.generate_length = self.sample_store // self.n_sample
if self.generate_length <= 1:
self.sample_store = 0
logger.info('No example store was used')
else:
self.neg_samples = self._generate_neg_samples(self.pop, self.generate_length)
self.sample_pointer = 0
logger.info('Created sample store with {} batches of samples'.format(self.generate_length))
else:
logger.info('No example store was used')
示例5: set_output
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import sum [as 別名]
def set_output(self):
padding = self._padding
input_shape = self._input_shape
if np.sum(self._padding) > 0:
padded_input = tensor.alloc(0.0, # Value to fill the tensor
input_shape[0],
input_shape[1] + 2 * padding[1],
input_shape[2],
input_shape[3] + 2 * padding[3],
input_shape[4] + 2 * padding[4])
padded_input = tensor.set_subtensor(
padded_input[:, padding[1]:padding[1] + input_shape[1], :, padding[3]:padding[3] +
input_shape[3], padding[4]:padding[4] + input_shape[4]],
self._prev_layer.output)
else:
padded_input = self._prev_layer.output
self._output = conv3d2d.conv3d(padded_input, self.W.val) + \
self.b.val.dimshuffle('x', 'x', 0, 'x', 'x')
示例6: get_output_for
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import sum [as 別名]
def get_output_for(self, input, init=False, **kwargs):
if input.ndim > 2:
# if the input has more than two dimensions, flatten it into a
# batch of feature vectors.
input = input.flatten(2)
activation = T.tensordot(input, self.W, [[1], [0]])
abs_dif = (T.sum(abs(activation.dimshuffle(0,1,2,'x') - activation.dimshuffle('x',1,2,0)),axis=2)
+ 1e6 * T.eye(input.shape[0]).dimshuffle(0,'x',1))
if init:
mean_min_abs_dif = 0.5 * T.mean(T.min(abs_dif, axis=2),axis=0)
abs_dif /= mean_min_abs_dif.dimshuffle('x',0,'x')
self.init_updates = [(self.log_weight_scale, self.log_weight_scale-T.log(mean_min_abs_dif).dimshuffle(0,'x'))]
f = T.sum(T.exp(-abs_dif),axis=2)
if init:
mf = T.mean(f,axis=0)
f -= mf.dimshuffle('x',0)
self.init_updates.append((self.b, -mf))
else:
f += self.b.dimshuffle('x',0)
return T.concatenate([input, f], axis=1)
示例7: __init__
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import sum [as 別名]
def __init__(self):
def f(x, u, i, terminal):
if terminal:
ctrl_cost = T.zeros_like(x[..., 0])
else:
ctrl_cost = T.square(u).sum(axis=-1)
# x: (batch_size, 8)
# x[..., 0:4]: qpos
# x[..., 4:8]: qvel, time derivatives of qpos, not used in the cost.
theta = x[..., 0] # qpos[0]: angle of joint 0
phi = x[..., 1] # qpos[1]: angle of joint 1
target_xpos = x[..., 2:4] # qpos[2:4], target x & y coordinate
body1_xpos = 0.1 * T.stack([T.cos(theta), T.sin(theta)], axis=1)
tip_xpos_incr = 0.11 * T.stack([T.cos(phi), T.sin(phi)], axis=1)
tip_xpos = body1_xpos + tip_xpos_incr
delta = tip_xpos - target_xpos
state_cost = T.sqrt(T.sum(delta * delta, axis=-1))
cost = state_cost + ctrl_cost
return cost
super().__init__(f, state_size=8, action_size=2)
示例8: __init__
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import sum [as 別名]
def __init__(self):
super(M, self).__init__()
x = T.matrix('x') # input, target
self.w = module.Member(T.matrix('w')) # weights
self.a = module.Member(T.vector('a')) # hid bias
self.b = module.Member(T.vector('b')) # output bias
self.hid = T.tanh(T.dot(x, self.w) + self.a)
hid = self.hid
self.out = T.tanh(T.dot(hid, self.w.T) + self.b)
out = self.out
self.err = 0.5 * T.sum((out - x)**2)
err = self.err
params = [self.w, self.a, self.b]
gparams = T.grad(err, params)
updates = [(p, p - 0.01 * gp) for p, gp in zip(params, gparams)]
self.step = module.Method([x], err, updates=dict(updates))
示例9: test_local_csm_grad_c
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import sum [as 別名]
def test_local_csm_grad_c():
raise SkipTest("Opt disabled as it don't support unsorted indices")
if not theano.config.cxx:
raise SkipTest("G++ not available, so we need to skip this test.")
data = tensor.vector()
indices, indptr, shape = (tensor.ivector(), tensor.ivector(),
tensor.ivector())
mode = theano.compile.mode.get_default_mode()
if theano.config.mode == 'FAST_COMPILE':
mode = theano.compile.Mode(linker='c|py', optimizer='fast_compile')
mode = mode.including("specialize", "local_csm_grad_c")
for CS, cast in [(sparse.CSC, sp.csc_matrix), (sparse.CSR, sp.csr_matrix)]:
cost = tensor.sum(sparse.DenseFromSparse()(CS(data, indices, indptr, shape)))
f = theano.function(
[data, indices, indptr, shape],
tensor.grad(cost, data),
mode=mode)
assert not any(isinstance(node.op, sparse.CSMGrad) for node
in f.maker.fgraph.toposort())
v = cast(random_lil((10, 40),
config.floatX, 3))
f(v.data, v.indices, v.indptr, v.shape)
示例10: test_csm_grad
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import sum [as 別名]
def test_csm_grad(self):
for sparsetype in ('csr', 'csc'):
x = tensor.vector()
y = tensor.ivector()
z = tensor.ivector()
s = tensor.ivector()
call = getattr(sp, sparsetype + '_matrix')
spm = call(random_lil((300, 400), config.floatX, 5))
out = tensor.grad(dense_from_sparse(
CSM(sparsetype)(x, y, z, s)
).sum(), x)
self._compile_and_check([x, y, z, s],
[out],
[spm.data, spm.indices, spm.indptr,
spm.shape],
(CSMGrad, CSMGradC)
)
示例11: test_csm_unsorted
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import sum [as 別名]
def test_csm_unsorted(self):
"""
Test support for gradients of unsorted inputs.
"""
sp_types = {'csc': sp.csc_matrix,
'csr': sp.csr_matrix}
for format in ['csr', 'csc', ]:
for dtype in ['float32', 'float64']:
x = tensor.tensor(dtype=dtype, broadcastable=(False,))
y = tensor.ivector()
z = tensor.ivector()
s = tensor.ivector()
# Sparse advanced indexing produces unsorted sparse matrices
a = sparse_random_inputs(format, (4, 3), out_dtype=dtype,
unsorted_indices=True)[1][0]
# Make sure it's unsorted
assert not a.has_sorted_indices
def my_op(x):
y = tensor.constant(a.indices)
z = tensor.constant(a.indptr)
s = tensor.constant(a.shape)
return tensor.sum(
dense_from_sparse(CSM(format)(x, y, z, s) * a))
verify_grad_sparse(my_op, [a.data])
示例12: test_op
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import sum [as 別名]
def test_op(self):
for format in sparse.sparse_formats:
for axis in self.possible_axis:
variable, data = sparse_random_inputs(format,
shape=(10, 10))
z = theano.sparse.sp_sum(variable[0], axis=axis)
if axis is None:
assert z.type.broadcastable == ()
else:
assert z.type.broadcastable == (False, )
f = theano.function(variable, self.op(variable[0], axis=axis))
tested = f(*data)
expected = data[0].todense().sum(axis).ravel()
utt.assert_allclose(expected, tested)
示例13: sum
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import sum [as 別名]
def sum(x, axis=None, keepdims=False):
'''Sum of the values in a tensor, alongside the specified axis.
'''
return T.sum(x, axis=axis, keepdims=keepdims)
示例14: categorical_crossentropy
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import sum [as 別名]
def categorical_crossentropy(output, target, from_logits=False):
if from_logits:
output = T.nnet.softmax(output)
else:
# scale preds so that the class probas of each sample sum to 1
output /= output.sum(axis=-1, keepdims=True)
# avoid numerical instability with _EPSILON clipping
output = T.clip(output, _EPSILON, 1.0 - _EPSILON)
return T.nnet.categorical_crossentropy(output, target)
示例15: l2_normalize
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import sum [as 別名]
def l2_normalize(x, axis):
norm = T.sqrt(T.sum(T.square(x), axis=axis, keepdims=True))
return x / norm