當前位置: 首頁>>代碼示例>>Python>>正文


Python tensor.sort方法代碼示例

本文整理匯總了Python中theano.tensor.sort方法的典型用法代碼示例。如果您正苦於以下問題:Python tensor.sort方法的具體用法?Python tensor.sort怎麽用?Python tensor.sort使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在theano.tensor的用法示例。


在下文中一共展示了tensor.sort方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: hard_bootstrapping_binary_crossentropy

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import sort [as 別名]
def hard_bootstrapping_binary_crossentropy(pred,
                                           target,
                                           num_taken,
                                           num_skipped=0,
                                           weight=1):
    """
    from
    High-performance Semantic Segmentation Using Very Deep Fully Convolutional Networks
    http://arxiv.org/abs/1604.04339
    """
    pixel_loss = treeano.utils.weighted_binary_crossentropy(pred,
                                                            target,
                                                            weight=weight)
    flat_loss = pixel_loss.flatten(2)
    sorted_flat_loss = T.sort(flat_loss)
    chosen_loss = sorted_flat_loss[:, -(num_taken + num_skipped):-num_skipped]
    return chosen_loss 
開發者ID:SBU-BMI,項目名稱:u24_lymphocyte,代碼行數:19,代碼來源:segmentation.py

示例2: dropout_max_pool

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import sort [as 別名]
def dropout_max_pool(neibs,
                     axis,
                     dropout_probability,
                     pool_size,
                     deterministic):
    assert neibs.ndim == 2
    assert axis == 1
    keep_probability = 1 - dropout_probability
    if deterministic:
        neibs_sorted = T.sort(neibs, axis=axis)
        # calculate probability of having each element be the maximum
        probs = np.array([keep_probability * dropout_probability ** i
                          for i in reversed(range(np.prod(pool_size)))],
                         dtype=fX)
        return T.dot(neibs_sorted, probs)
    else:
        # FIXME save state in network
        srng = MRG_RandomStreams()
        mask = srng.binomial(neibs.shape,
                             p=keep_probability,
                             dtype=fX)
        return (neibs * mask).max(axis=axis) 
開發者ID:SBU-BMI,項目名稱:u24_lymphocyte,代碼行數:24,代碼來源:dropout_max_pool.py

示例3: rbf_kernel

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import sort [as 別名]
def rbf_kernel(X0):
    XY = T.dot(X0, X0.transpose())
    x2 = T.reshape(T.sum(T.square(X0), axis=1), (X0.shape[0], 1))
    X2e = T.repeat(x2, X0.shape[0], axis=1)
    H = T.sub(T.add(X2e, X2e.transpose()), 2 * XY)
    
    V = H.flatten()
    
    # median distance
    h = T.switch(T.eq((V.shape[0] % 2), 0),
        # if even vector
        T.mean(T.sort(V)[ ((V.shape[0] // 2) - 1) : ((V.shape[0] // 2) + 1) ]),
        # if odd vector
        T.sort(V)[V.shape[0] // 2])
    
    h = T.sqrt(0.5 * h / T.log(X0.shape[0].astype('float32') + 1.0)) / 2.

    Kxy = T.exp(-H / h ** 2 / 2.0)
    neighbors = T.argsort(H, axis=1)[:, 1]

    return Kxy, neighbors, h 
開發者ID:DartML,項目名稱:SteinGAN,代碼行數:23,代碼來源:steingan_celeba.py

示例4: rbf_kernel

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import sort [as 別名]
def rbf_kernel(X):

    XY = T.dot(X, X.T)
    x2 = T.sum(X**2, axis=1).dimshuffle(0, 'x')
    X2e = T.repeat(x2, X.shape[0], axis=1)
    H = X2e +  X2e.T - 2. * XY

    V = H.flatten()
    # median distance
    h = T.switch(T.eq((V.shape[0] % 2), 0),
        # if even vector
        T.mean(T.sort(V)[ ((V.shape[0] // 2) - 1) : ((V.shape[0] // 2) + 1) ]),
        # if odd vector
        T.sort(V)[V.shape[0] // 2])

    h = T.sqrt(.5 * h / T.log(H.shape[0].astype('float32') + 1.)) 
    
    # compute the rbf kernel
    kxy = T.exp(-H / (h ** 2) / 2.0)

    dxkxy = -T.dot(kxy, X)
    sumkxy = T.sum(kxy, axis=1).dimshuffle(0, 'x')
    dxkxy = T.add(dxkxy, T.mul(X, sumkxy)) / (h ** 2)

    return kxy, dxkxy 
開發者ID:DartML,項目名稱:SteinGAN,代碼行數:27,代碼來源:rbm_adv.py

示例5: k_max_pool

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import sort [as 別名]
def k_max_pool(self, x, k):
        """
        perform k-max pool on the input along the rows

        input: theano.tensor.tensor4
           
        k: theano.tensor.iscalar
            the k parameter

        Returns: 
        4D tensor
        """
        ind = T.argsort(x, axis = 3)

        sorted_ind = T.sort(ind[:,:,:, -k:], axis = 3)
        
        dim0, dim1, dim2, dim3 = sorted_ind.shape
        
        indices_dim0 = T.arange(dim0).repeat(dim1 * dim2 * dim3)
        indices_dim1 = T.arange(dim1).repeat(dim2 * dim3).reshape((dim1*dim2*dim3, 1)).repeat(dim0, axis=1).T.flatten()
        indices_dim2 = T.arange(dim2).repeat(dim3).reshape((dim2*dim3, 1)).repeat(dim0 * dim1, axis = 1).T.flatten()
        
        return x[indices_dim0, indices_dim1, indices_dim2, sorted_ind.flatten()].reshape(sorted_ind.shape) 
開發者ID:xiaohan2012,項目名稱:twitter-sent-dnn,代碼行數:25,代碼來源:dcnn_train.py

示例6: call

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import sort [as 別名]
def call(self, x,mask=None):
        import theano.tensor as T
        newx = T.sort(x)
        #response = K.reverse(newx, axes=1)
        #response = K.sum(x> 0.5, axis=1) / self.k
        return newx
        #response = K.reshape(newx,[-1,1])
        #return K.concatenate([1-response, response], axis=self.label)
        #response = K.reshape(x[:,self.axis], (-1,1))
        #return K.concatenate([1-response, response], axis=self.axis)
        #e = K.exp(x - K.max(x, axis=self.axis, keepdims=True))
        #s = K.sum(e, axis=self.axis, keepdims=True)
        #return e / s 
開發者ID:wentaozhu,項目名稱:deep-mil-for-whole-mammogram-classification,代碼行數:15,代碼來源:customlayers.py

示例7: bootstrapped_xentropy

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import sort [as 別名]
def bootstrapped_xentropy(predictions, targets, batch_size=3, multiplier=64):
    """A categorical cross entropy loss for 4D tensors.

    We assume the following layout: (batch, classes, height, width)

    Args:
        predictions: The output of a log softmax layer.
        targets: The predictions as a one-hot encoded tensor.
        batch_size: The batch size
        multiplier: A multiplier variable that determine the number of pixels to
            select in the bootstrapping process. The total number of pixels is
            determined as 512 * multiplier.

    Returns:
        The pixel-bootstrapped cross entropy loss.
    """
    # Compute the pixel-wise cross entropy. Recall that the predictions are
    # already the log softmax.
    xentropy = -T.sum(predictions * targets, axis=1)

    # For each element in the batch, collect the top K worst predictions
    K = 512 * multiplier

    result = T.constant(0, dtype="float32")
    for i in range(batch_size):
        batch_erors = xentropy[i]

        # Void pixels already get a loss of 0, so they're never selected.
        flat_errors = T.flatten(batch_erors)

        # Get the worst predictions.
        worst_errors = T.sort(flat_errors)[-K:]

        result += T.mean(worst_errors)

    result /= T.constant(batch_size, dtype="float32")

    return result 
開發者ID:TobyPDE,項目名稱:FRRN,代碼行數:40,代碼來源:losses.py

示例8: in_top_k

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import sort [as 別名]
def in_top_k(predictions, targets, k):
    """Returns whether the `targets` are in the top `k` `predictions`.

    # Arguments
        predictions: A tensor of shape `(batch_size, classes)` and type `float32`.
        targets: A 1D tensor of length `batch_size` and type `int32` or `int64`.
        k: An `int`, number of top elements to consider.

    # Returns
        A 1D tensor of length `batch_size` and type `bool`.
        `output[i]` is `True` if `predictions[i, targets[i]]` is within top-`k`
        values of `predictions[i]`.
    """
    # handle k < 1 and k >= predictions.shape[1] cases to match TF behavior
    if k < 1:
        # dtype='bool' is only available since Theano 0.9.0
        try:
            return T.zeros_like(targets, dtype='bool')
        except TypeError:
            return T.zeros_like(targets, dtype='int8')

    if k >= int_shape(predictions)[1]:
        try:
            return T.ones_like(targets, dtype='bool')
        except TypeError:
            return T.ones_like(targets, dtype='int8')

    predictions_k = T.sort(predictions)[:, -k]
    targets_values = predictions[T.arange(targets.shape[0]), targets]
    return T.ge(targets_values, predictions_k)


# CONVOLUTIONS 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:35,代碼來源:theano_backend.py

示例9: hard_bootstrap_aggregator

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import sort [as 別名]
def hard_bootstrap_aggregator(loss, num_taken, num_skipped=0):
    flat_loss = loss.flatten(2)
    sorted_flat_loss = T.sort(flat_loss, axis=1)
    chosen_loss = sorted_flat_loss[:, -(num_taken + num_skipped):-num_skipped]
    return chosen_loss.mean() 
開發者ID:SBU-BMI,項目名稱:u24_lymphocyte,代碼行數:7,代碼來源:segmentation.py

示例10: mixed_hard_bootstrap_aggregator

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import sort [as 別名]
def mixed_hard_bootstrap_aggregator(loss, mix_rate, num_taken, num_skipped=0):
    flat_loss = loss.flatten(2)
    sorted_flat_loss = T.sort(flat_loss, axis=1)
    chosen_loss = sorted_flat_loss[:, -(num_taken + num_skipped):-num_skipped]
    return mix_rate * chosen_loss.mean() + (1 - mix_rate) * loss.mean() 
開發者ID:SBU-BMI,項目名稱:u24_lymphocyte,代碼行數:7,代碼來源:segmentation.py


注:本文中的theano.tensor.sort方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。