當前位置: 首頁>>代碼示例>>Python>>正文


Python tensor.shape_padright方法代碼示例

本文整理匯總了Python中theano.tensor.shape_padright方法的典型用法代碼示例。如果您正苦於以下問題:Python tensor.shape_padright方法的具體用法?Python tensor.shape_padright怎麽用?Python tensor.shape_padright使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在theano.tensor的用法示例。


在下文中一共展示了tensor.shape_padright方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: compute_weighted_averages

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import shape_padright [as 別名]
def compute_weighted_averages(self, weights, attended):
        """Compute weighted averages of the attended sequence vectors.

        Parameters
        ----------
        weights : :class:`~theano.Variable`
            The weights. The shape must be equal to the attended shape
            without the last dimension.
        attended : :class:`~theano.Variable`
            The attended. The index in the sequence must be the first
            dimension.

        Returns
        -------
        weighted_averages : :class:`~theano.Variable`
            The weighted averages of the attended elements. The shape
            is equal to the attended shape with the first dimension
            dropped.

        """
        return (tensor.shape_padright(weights) * attended).sum(axis=0) 
開發者ID:rizar,項目名稱:attention-lvcsr,代碼行數:23,代碼來源:attention.py

示例2: sym_logdensity

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import shape_padright [as 別名]
def sym_logdensity(self, x):
        """ x is a matrix of column datapoints (VxB) V = n_visible, B = batch size """
        def density_given_previous_a_and_x(x, w, V_alpha, b_alpha, V_mu, b_mu, V_sigma, b_sigma, activations_factor, p_prev, a_prev, x_prev):
            a = a_prev + T.dot(T.shape_padright(x_prev, 1), T.shape_padleft(w, 1))
            h = self.nonlinearity(a * activations_factor)  # BxH

            Alpha = T.nnet.softmax(T.dot(h, V_alpha) + T.shape_padleft(b_alpha))  # BxC
            Mu = T.dot(h, V_mu) + T.shape_padleft(b_mu)  # BxC
            Sigma = T.exp((T.dot(h, V_sigma) + T.shape_padleft(b_sigma)))  # BxC
            p = p_prev + log_sum_exp(T.log(Alpha) - T.log(2 * Sigma) - T.abs_(Mu - T.shape_padright(x, 1)) / Sigma)
            return (p, a, x)
        # First element is different (it is predicted from the bias only)
        a0 = T.zeros_like(T.dot(x.T, self.W))  # BxH
        p0 = T.zeros_like(x[0])
        x0 = T.ones_like(x[0])
        ([ps, _as, _xs], updates) = theano.scan(density_given_previous_a_and_x,
                                                sequences=[x, self.W, self.V_alpha, self.b_alpha, self.V_mu, self.b_mu, self.V_sigma, self.b_sigma, self.activation_rescaling],
                                                outputs_info=[p0, a0, x0])
        return (ps[-1], updates) 
開發者ID:MarcCote,項目名稱:NADE,代碼行數:21,代碼來源:MoLaplaceNADE.py

示例3: sym_logdensity

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import shape_padright [as 別名]
def sym_logdensity(self, x):
        """ x is a matrix of column datapoints (VxB) V = n_visible, B = batch size """
        def density_given_previous_a_and_x(x, w, V_alpha, b_alpha, V_mu, b_mu, V_sigma, b_sigma, activations_factor, p_prev, a_prev, x_prev):
            a = a_prev + T.dot(T.shape_padright(x_prev, 1), T.shape_padleft(w, 1))
            h = self.nonlinearity(a * activations_factor)  # BxH

            Alpha = T.nnet.softmax(T.dot(h, V_alpha) + T.shape_padleft(b_alpha))  # BxC
            Mu = T.dot(h, V_mu) + T.shape_padleft(b_mu)  # BxC
            Sigma = T.exp((T.dot(h, V_sigma) + T.shape_padleft(b_sigma)))  # BxC
            p = p_prev + log_sum_exp(-constantX(0.5) * T.sqr((Mu - T.shape_padright(x, 1)) / Sigma) - T.log(Sigma) - constantX(0.5 * np.log(2 * np.pi)) + T.log(Alpha))
            return (p, a, x)
        # First element is different (it is predicted from the bias only)
        a0 = T.zeros_like(T.dot(x.T, self.W))  # BxH
        p0 = T.zeros_like(x[0])
        x0 = T.ones_like(x[0])
        ([ps, _as, _xs], updates) = theano.scan(density_given_previous_a_and_x,
                                                sequences=[x, self.W, self.V_alpha, self.b_alpha, self.V_mu, self.b_mu, self.V_sigma, self.b_sigma, self.activation_rescaling],
                                                outputs_info=[p0, a0, x0])
        return (ps[-1], updates) 
開發者ID:MarcCote,項目名稱:NADE,代碼行數:21,代碼來源:MoGNADE.py

示例4: process

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import shape_padright [as 別名]
def process(self, gstate, dropout_masks=Ellipsis):
        """
        Convert the graph state to a representation vector, using softmax attention to scale representations

        Params:
            gstate: A GraphState giving the current state

        Returns: A representation vector of shape (n_batch, representation_width)
        """
        if dropout_masks is Ellipsis:
            dropout_masks = None
            append_masks = False
        else:
            append_masks = True

        flat_obs = T.concatenate([
                        gstate.node_ids.reshape([-1, self._graph_spec.num_node_ids]),
                        gstate.node_states.reshape([-1, self._graph_spec.node_state_size])], 1)
        flat_activations, dropout_masks = self._representation_stack.process(flat_obs, dropout_masks)
        activations = flat_activations.reshape([gstate.n_batch, gstate.n_nodes, self._representation_width+1])

        activation_strengths = activations[:,:,0]
        existence_penalty = T.log(gstate.node_strengths + EPSILON) # TODO: consider removing epsilon here
        selector = T.shape_padright(T.nnet.softmax(activation_strengths + existence_penalty))
        representations = T.tanh(activations[:,:,1:])

        result = T.sum(selector * representations, 1)
        if append_masks:
            return result, dropout_masks
        else:
            return result 
開發者ID:hexahedria,項目名稱:gated-graph-transformer-network,代碼行數:33,代碼來源:aggregate_representation_softmax.py

示例5: process

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import shape_padright [as 別名]
def process(self, gstate, dropout_masks=Ellipsis):
        """
        Convert the graph state to a representation vector, using sigmoid attention to scale representations

        Params:
            gstate: A GraphState giving the current state

        Returns: A representation vector of shape (n_batch, representation_width)
        """
        if dropout_masks is Ellipsis:
            dropout_masks = None
            append_masks = False
        else:
            append_masks = True

        flat_obs = T.concatenate([
                        gstate.node_ids.reshape([-1, self._graph_spec.num_node_ids]),
                        gstate.node_states.reshape([-1, self._graph_spec.node_state_size])], 1)
        flat_activations, dropout_masks = self._representation_stack.process(flat_obs, dropout_masks)
        activations = flat_activations.reshape([gstate.n_batch, gstate.n_nodes, self._representation_width+1])

        activation_strengths = activations[:,:,0]
        selector = T.shape_padright(T.nnet.sigmoid(activation_strengths) * gstate.node_strengths)
        representations = T.tanh(activations[:,:,1:])

        result = T.tanh(T.sum(selector * representations, 1))
        if append_masks:
            return result, dropout_masks
        else:
            return result 
開發者ID:hexahedria,項目名稱:gated-graph-transformer-network,代碼行數:32,代碼來源:aggregate_representation.py

示例6: step

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import shape_padright [as 別名]
def step(self, ipt, state, state_strength, dropout_masks=None):
        """
        Perform a single step of the network

        Params:
            ipt: The current input. Should be an int tensor of shape (n_batch, self.input_width)
            state: The previous state. Should be a float tensor of shape (n_batch, self.output_width)
            state_strength: Strength of the previous state. Should be a float tensor of shape
                (n_batch)
            dropout_masks: Masks from get_dropout_masks

        Returns: The next output state, and the next output strength
        """
        if dropout_masks is not None:
            ipt_masks, state_masks = dropout_masks
            ipt = ipt*ipt_masks
            state = state*state_masks

        obs_state = state * T.shape_padright(state_strength)
        cat_ipt_state = T.concatenate([ipt, obs_state], 1)
        reset = do_layer( T.nnet.sigmoid, cat_ipt_state,
                            self._reset_W, self._reset_b )
        update = do_layer( T.nnet.sigmoid, cat_ipt_state,
                            self._update_W, self._update_b )
        update_state = update[:,:-1]
        update_strength = update[:,-1]

        cat_reset_ipt_state = T.concatenate([ipt, (reset * obs_state)], 1)
        candidate_act = do_layer( T.tanh, cat_reset_ipt_state,
                            self._activation_W, self._activation_b )
        candidate_strength = do_layer( T.nnet.sigmoid, cat_reset_ipt_state,
                            self._strength_W, self._strength_b ).reshape(state_strength.shape)

        newstate = update_state * state + (1-update_state) * candidate_act
        newstrength = update_strength * state_strength + (1-update_strength) * candidate_strength

        return newstate, newstrength 
開發者ID:hexahedria,項目名稱:gated-graph-transformer-network,代碼行數:39,代碼來源:strength_weighted_gru.py

示例7: get_padded_shuffled_mask

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import shape_padright [as 別名]
def get_padded_shuffled_mask(self, train, X, pad=0):
        mask = self.get_input_mask(train)
        if mask is None:
            mask = T.ones_like(X.sum(axis=-1))  # is there a better way to do this without a sum?

        # mask is (nb_samples, time)
        mask = T.shape_padright(mask)  # (nb_samples, time, 1)
        mask = T.addbroadcast(mask, -1)  # (time, nb_samples, 1) matrix.
        mask = mask.dimshuffle(1, 0, 2)  # (time, nb_samples, 1)

        if pad > 0:
            # left-pad in time with 0
            padding = alloc_zeros_matrix(pad, mask.shape[1], 1)
            mask = T.concatenate([padding, mask], axis=0)
        return mask.astype('int8') 
開發者ID:lllcho,項目名稱:CAPTCHA-breaking,代碼行數:17,代碼來源:recurrent.py

示例8: error

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import shape_padright [as 別名]
def error(self, *args, **kwargs):
        input = self.input_layer.output(*args, **kwargs)

        # never actually dropout anything on the output layer, just pass it along!

        if self.error_measure == 'mse':
            error = T.mean((input - self.target_var) ** 2)
        elif self.error_measure == 'ce': # cross entropy
            error = T.mean(T.nnet.binary_crossentropy(input, self.target_var))
        elif self.error_measure == 'nca':
            epsilon = 1e-8
            #dist_ij = - T.dot(input, input.T)
            # dist_ij = input
            dist_ij = T.sum((input.dimshuffle(0, 'x', 1) - input.dimshuffle('x', 0, 1)) ** 2, axis=2)
            p_ij_unnormalised = T.exp(-dist_ij) + epsilon
            p_ij_unnormalised = p_ij_unnormalised * (1 - T.eye(self.mb_size)) # set the diagonal to 0
            p_ij = p_ij_unnormalised / T.sum(p_ij_unnormalised, axis=1)
            return - T.mean(p_ij * self.target_var)

            # 
            # p_ij = p_ij_unnormalised / T.sum(p_ij_unnormalised, axis=1)
            # return np.mean(p_ij * self.target_var)
        elif self.error_measure == 'maha':
            # e = T.shape_padright(input - self.target_var)
            # e = (input - self.target_var).dimshuffle((0, 'x', 1))
            # error = T.sum(T.sum(self.target_cov_var * e, 2) ** 2) / self.mb_size

            e = (input - self.target_var)
            eTe = e.dimshuffle((0, 'x', 1)) * e.dimshuffle((0, 1, 'x'))
            error = T.sum(self.target_cov_var * eTe) / self.mb_size
        else:
            1 / 0

        return error 
開發者ID:benanne,項目名稱:kaggle-galaxies,代碼行數:36,代碼來源:layers.py

示例9: _train_fprop

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import shape_padright [as 別名]
def _train_fprop(self, state_below):
        rd = theano_rand.binomial(size=(state_below.shape[0],), n=1, p=(1-self.ratio), dtype=floatX)
        return state_below * T.shape_padright(rd) 
開發者ID:hycis,項目名稱:Mozi,代碼行數:5,代碼來源:noise.py

示例10: log_sum_exp

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import shape_padright [as 別名]
def log_sum_exp(x, axis=1):
    max_x = T.max(x, axis)
    return max_x + T.log(T.sum(T.exp(x - T.shape_padright(max_x, 1)), axis)) 
開發者ID:MarcCote,項目名稱:NADE,代碼行數:5,代碼來源:theano_helpers.py

示例11: sym_mask_logdensity_estimator_intermediate

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import shape_padright [as 別名]
def sym_mask_logdensity_estimator_intermediate(self, x, mask):
        non_linearity_name = self.parameters["nonlinearity"].get_name()
        assert(non_linearity_name == "sigmoid" or non_linearity_name == "RLU")
        x = x.T  # BxD
        mask = mask.T  # BxD
        output_mask = constantX(1) - mask  # BxD
        D = constantX(self.n_visible)
        d = mask.sum(1)  # d is the 1-based index of the dimension whose value to infer (not the size of the context)
        masked_input = x * mask  # BxD
        h = self.nonlinearity(T.dot(masked_input, self.W1) + T.dot(mask, self.Wflags) + self.b1)  # BxH
        for l in xrange(self.n_layers - 1):
            h = self.nonlinearity(T.dot(h, self.Ws[l]) + self.bs[l])  # BxH
        z_alpha = T.tensordot(h, self.V_alpha, [[1], [1]]) + T.shape_padleft(self.b_alpha)
        z_mu = T.tensordot(h, self.V_mu, [[1], [1]]) + T.shape_padleft(self.b_mu)
        z_sigma = T.tensordot(h, self.V_sigma, [[1], [1]]) + T.shape_padleft(self.b_sigma)
        temp = T.exp(z_alpha)  # + 1e-6
        # temp += T.shape_padright(temp.sum(2)/1e-3)
        Alpha = temp / T.shape_padright(temp.sum(2))  # BxDxC
        Mu = z_mu  # BxDxC
        Sigma = T.exp(z_sigma)  # + 1e-6 #BxDxC

        # Alpha = Alpha * T.shape_padright(output_mask) + T.shape_padright(mask)
        # Mu = Mu * T.shape_padright(output_mask)
        # Sigma = Sigma * T.shape_padright(output_mask) + T.shape_padright(mask)
        # Phi = -constantX(0.5) * T.sqr((Mu - T.shape_padright(x*output_mask)) / Sigma) - T.log(Sigma) - constantX(0.5 * np.log(2*np.pi)) #BxDxC

        Phi = -constantX(0.5) * T.sqr((Mu - T.shape_padright(x)) / Sigma) - T.log(Sigma) - constantX(0.5 * np.log(2 * np.pi))  # BxDxC
        logdensity = (log_sum_exp(Phi + T.log(Alpha), axis=2) * output_mask).sum(1) * D / (D - d)
        return (logdensity, z_alpha, z_mu, z_sigma, Alpha, Mu, Sigma, h) 
開發者ID:MarcCote,項目名稱:NADE,代碼行數:31,代碼來源:OrderlessMoGNADE.py

示例12: sym_masked_neg_loglikelihood_gradient

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import shape_padright [as 別名]
def sym_masked_neg_loglikelihood_gradient(self, x, mask):
        """ x is a matrix of column datapoints (DxB) D = n_visible, Bfloat = batch size """
        logdensity, z_alpha, z_mu, z_sigma, Alpha, Mu, Sigma, h = self.sym_mask_logdensity_estimator_intermediate(x, mask)

#        nnz = output_mask.sum(0)
#        sparsity_multiplier = T.shape_padright(T.shape_padleft((B+1e-6)/(nnz+1e-6)))

#        wPhi = T.maximum(Phi + T.log(Alpha), constantX(-100.0)) #BxDxC
#        lp_current = log_sum_exp(wPhi, axis = 2) * output_mask #BxD
#        lp_current_sum = (lp_current.sum(1) * D / (D-d)).sum() #1

        loglikelihood = logdensity.mean(dtype=floatX)
        loss = -loglikelihood

        dp_dz_alpha = T.grad(loss, z_alpha)  # BxDxC
        gb_alpha = dp_dz_alpha.sum(0)  # DxC
        gV_alpha = T.tensordot(h.T, dp_dz_alpha, [[1], [0]]).dimshuffle((1, 0, 2))  # DxHxC

        dp_dz_mu = T.grad(loss, z_mu)  # BxDxC
        dp_dz_mu = dp_dz_mu * Sigma  # Heuristic
        gb_mu = dp_dz_mu.sum(0)  # DxC
        gV_mu = T.tensordot(h.T, dp_dz_mu, [[1], [0]]).dimshuffle((1, 0, 2))  # DxHxC

        dp_dz_sigma = T.grad(loss, z_sigma)  # BxDxC
        gb_sigma = dp_dz_sigma.sum(0)  # DxC
        gV_sigma = T.tensordot(h.T, dp_dz_sigma, [[1], [0]]).dimshuffle((1, 0, 2))  # DxHxC

        if self.n_layers > 1:
            gWs, gbs, gW1, gWflags, gb1 = T.grad(loss, [self.Ws, self.bs, self.W1, self.Wflags, self.b1])
            gradients = {"V_alpha":gV_alpha, "b_alpha":gb_alpha, "V_mu":gV_mu, "b_mu":gb_mu, "V_sigma":gV_sigma, "b_sigma":gb_sigma, "Ws":gWs, "bs":gbs, "W1":gW1, "b1":gb1, "Wflags":gWflags}
        else:
            gW1, gWflags, gb1 = T.grad(loss, [self.W1, self.Wflags, self.b1])
            gradients = {"V_alpha":gV_alpha, "b_alpha":gb_alpha, "V_mu":gV_mu, "b_mu":gb_mu, "V_sigma":gV_sigma, "b_sigma":gb_sigma, "W1":gW1, "b1":gb1, "Wflags":gWflags}
        # Gradients
        return (loss, gradients) 
開發者ID:MarcCote,項目名稱:NADE,代碼行數:37,代碼來源:OrderlessMoGNADE.py

示例13: compute_illumination

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import shape_padright [as 別名]
def compute_illumination(self, xyz, xs, ys, zs, Rs, sigr, on94_exact):
        """Compute the illumination profile when rendering maps."""

        if self.source_npts == 1:

            return self.compute_illumination_point_source(
                xyz, xs, ys, zs, sigr, on94_exact
            )

        else:

            # The effective size of the star as seen by the planet
            # is smaller. Only include points
            # that fall on this smaller disk.
            rs = tt.sqrt(xs ** 2 + ys ** 2 + zs ** 2)
            Reff = Rs * tt.sqrt(1 - ((Rs - 1) / rs) ** 2)
            dx = tt.shape_padright(Reff) * self.source_dx
            dy = tt.shape_padright(Reff) * self.source_dy
            # Note that the star is *closer* to the planet, hence the - sign
            dz = -tt.sqrt(Rs ** 2 - dx ** 2 - dy ** 2)

            # Compute the illumination for each point on the source disk
            I = self.compute_illumination_point_source(
                xyz,
                tt.reshape(tt.shape_padright(xs) + dx, (-1,)),
                tt.reshape(tt.shape_padright(ys) + dy, (-1,)),
                tt.reshape(tt.shape_padright(zs) + dz, (-1,)),
                sigr,
                on94_exact,
            )
            I = tt.reshape(I, (-1, tt.shape(xs)[0], self.source_npts))

            # Average over each profile
            return tt.sum(I, axis=2) / self.source_npts 
開發者ID:rodluger,項目名稱:starry,代碼行數:36,代碼來源:core.py

示例14: get_output_for

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import shape_padright [as 別名]
def get_output_for(self, inputs, **kwargs):
        # take the minimal working slice size, and use that one.
        return inputs[0] * T.shape_padright(inputs[1], n_ones=inputs[0].ndim-inputs[1].ndim) 
開發者ID:317070,項目名稱:kaggle-heart,代碼行數:5,代碼來源:layers.py

示例15: process

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import shape_padright [as 別名]
def process(self, gstate, dropout_masks=Ellipsis):
        """
        Process a graph state.
          1. Data is transfered from each node to each other node along both forward and backward edges.
                This data is processed with a Wx+b style update, and an optional transformation is applied
          2. Nodes sum the transfered data, weighted by the existence of the other node and the edge.
          3. Nodes perform a GRU update with this input

        Params:
            gstate: A GraphState giving the current state
        """
        if dropout_masks is Ellipsis:
            dropout_masks = None
            append_masks = False
        else:
            append_masks = True

        node_obs = T.concatenate([gstate.node_ids, gstate.node_states],2)
        flat_node_obs = node_obs.reshape([-1, self._process_input_size])
        transformed, dropout_masks = self._transfer_stack.process(flat_node_obs,dropout_masks)
        transformed = transformed.reshape([gstate.n_batch, gstate.n_nodes, 2*self._graph_spec.num_edge_types, self._transfer_size])
        scaled_transformed = transformed * T.shape_padright(T.shape_padright(gstate.node_strengths))
        # scaled_transformed is of shape (n_batch, n_nodes, 2*num_edge_types, transfer_size)
        # We want to multiply  through by edge strengths, which are of shape
        # (n_batch, n_nodes, n_nodes, num_edge_types), both fwd and backward
        edge_strength_scale = T.concatenate([gstate.edge_strengths, gstate.edge_strengths.swapaxes(1,2)], 3)
        # edge_strength_scale is of (n_batch, n_nodes, n_nodes, 2*num_edge_types)
        intermed = T.shape_padaxis(scaled_transformed, 2) * T.shape_padright(edge_strength_scale)
        # intermed is of shape (n_batch, n_nodes "source", n_nodes "dest", 2*num_edge_types, transfer_size)
        # now reduce along the "source" and "edge_types" dimensions to get dest activations
        # of shape (n_batch, n_nodes, transfer_size)
        reduced_result = T.sum(T.sum(intermed, 3), 1)

        # now add information fom current node id
        full_input = T.concatenate([gstate.node_ids, reduced_result], 2)

        # we flatten to apply GRU
        flat_input = full_input.reshape([-1, self._graph_spec.num_node_ids + self._transfer_size])
        flat_state = gstate.node_states.reshape([-1, self._graph_spec.node_state_size])
        new_flat_state, dropout_masks = self._propagation_gru.step(flat_input, flat_state, dropout_masks)

        new_node_states = new_flat_state.reshape(gstate.node_states.shape)

        new_gstate = gstate.with_updates(node_states=new_node_states)
        if append_masks:
            return new_gstate, dropout_masks
        else:
            return new_gstate 
開發者ID:hexahedria,項目名稱:gated-graph-transformer-network,代碼行數:50,代碼來源:propagation.py


注:本文中的theano.tensor.shape_padright方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。