當前位置: 首頁>>代碼示例>>Python>>正文


Python tensor.shape方法代碼示例

本文整理匯總了Python中theano.tensor.shape方法的典型用法代碼示例。如果您正苦於以下問題:Python tensor.shape方法的具體用法?Python tensor.shape怎麽用?Python tensor.shape使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在theano.tensor的用法示例。


在下文中一共展示了tensor.shape方法的13個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: sp_ones_like

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import shape [as 別名]
def sp_ones_like(x):
    """
    Construct a sparse matrix of ones with the same sparsity pattern.

    Parameters
    ----------
    x
        Sparse matrix to take the sparsity pattern.

    Returns
    -------
    A sparse matrix
        The same as `x` with data changed for ones.

    """
    # TODO: don't restrict to CSM formats
    data, indices, indptr, shape = csm_properties(x)
    return CSM(format=x.format)(tensor.ones_like(data), indices, indptr, shape) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:20,代碼來源:basic.py

示例2: sp_zeros_like

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import shape [as 別名]
def sp_zeros_like(x):
    """
    Construct a sparse matrix of zeros.

    Parameters
    ----------
    x
        Sparse matrix to take the shape.

    Returns
    -------
    A sparse matrix
        The same as `x` with zero entries for all element.

    """

    # TODO: don't restrict to CSM formats
    _, _, indptr, shape = csm_properties(x)
    return CSM(format=x.format)(data=numpy.array([], dtype=x.type.dtype),
                                indices=numpy.array([], dtype='int32'),
                                indptr=tensor.zeros_like(indptr),
                                shape=shape) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:24,代碼來源:basic.py

示例3: perform

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import shape [as 別名]
def perform(self, node, inputs, outputs):
        # for efficiency, if remap does nothing, then do not apply it
        (data, indices, indptr, shape) = inputs
        (out,) = outputs

        if len(shape) != 2:
            raise ValueError('Shape should be an array of length 2')
        if data.shape != indices.shape:
            errmsg = ('Data (shape ' + repr(data.shape) +
                      ' must have the same number of elements ' +
                      'as indices (shape' + repr(indices.shape) +
                      ')')
            raise ValueError(errmsg)
        if self.format == 'csc':
            out[0] = scipy.sparse.csc_matrix((data, indices.copy(),
                                              indptr.copy()),
                                             numpy.asarray(shape), copy=False)
        else:
            assert self.format == 'csr'
            out[0] = scipy.sparse.csr_matrix((data, indices.copy(),
                                              indptr.copy()), shape.copy(),
                                             copy=False) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:24,代碼來源:basic.py

示例4: grad

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import shape [as 別名]
def grad(self, inputs, gout):
        (gz,) = gout
        is_continuous = [(inputs[i].dtype in tensor.continuous_dtypes)
                         for i in range(len(inputs))]

        if _is_sparse_variable(gz):
            gz = dense_from_sparse(gz)

        split = tensor.Split(len(inputs))(gz, 0,
                                          tensor.stack(
                                              [x.shape[0]
                                               for x in inputs]))
        if not isinstance(split, list):
            split = [split]

        derivative = [SparseFromDense(self.format)(s) for s in split]

        def choose(continuous, derivative):
            if continuous:
                return derivative
            else:
                return None
        return [choose(c, d) for c, d in zip(is_continuous, derivative)] 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:25,代碼來源:basic.py

示例5: structured_monoid

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import shape [as 別名]
def structured_monoid(tensor_op):
    # Generic operation to perform many kinds of monoid element-wise
    # operations on the non-zeros of a sparse matrix.

    # The first parameter must always be a sparse matrix. The other parameters
    # must be scalars which will be passed as argument to the tensor_op.

    def decorator(f):
        def wrapper(*args):
            x = as_sparse_variable(args[0])
            assert x.format in ["csr", "csc"]

            xs = [scalar.as_scalar(arg) for arg in args[1:]]

            data, ind, ptr, shape = csm_properties(x)

            data = tensor_op(data, *xs)

            return CSM(x.format)(data, ind, ptr, shape)
        wrapper.__name__ = str(tensor_op.scalar_op)
        return wrapper
    return decorator 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:24,代碼來源:basic.py

示例6: __init__

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import shape [as 別名]
def __init__(self, input_var=None, num_styles=None, shape=(None, 3, 256, 256), net_type=1, **kwargs):
		"""
		net_type: 0 (fast neural style- fns) or 1 (conditional instance norm- cin)
		"""
		assert net_type in [0, 1]
		self.net_type = net_type
		self.network = {}

		if len(shape) == 2:
			shape=(None, 3, shape[0], shape[1])
		elif len(shape) == 3:
			shape=(None, shape[0], shape[1], shape[2])
		self.shape = shape

		self.num_styles = num_styles

		self.network['loss_net'] = {}
		self.setup_loss_net()
		self.load_loss_net_weights()

		self.network['transform_net'] = {}
		self.setup_transform_net(input_var) 
開發者ID:joelmoniz,項目名稱:gogh-figure,代碼行數:24,代碼來源:model.py

示例7: setup_transform_net

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import shape [as 別名]
def setup_transform_net(self, input_var=None):
		transform_net = InputLayer(shape=self.shape, input_var=input_var)
		transform_net = style_conv_block(transform_net, self.num_styles, 32, 9, 1)
		transform_net = style_conv_block(transform_net, self.num_styles, 64, 3, 2)
		transform_net = style_conv_block(transform_net, self.num_styles, 128, 3, 2)
		for _ in range(5):
			transform_net = residual_block(transform_net, self.num_styles)
		transform_net = nn_upsample(transform_net, self.num_styles)
		transform_net = nn_upsample(transform_net, self.num_styles)

		if self.net_type == 0:
			transform_net = style_conv_block(transform_net, self.num_styles, 3, 9, 1, tanh)
			transform_net = ExpressionLayer(transform_net, lambda X: 150.*X, output_shape=None)
		elif self.net_type == 1:
			transform_net = style_conv_block(transform_net, self.num_styles, 3, 9, 1, sigmoid)

		self.network['transform_net'] = transform_net 
開發者ID:joelmoniz,項目名稱:gogh-figure,代碼行數:19,代碼來源:model.py

示例8: perform

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import shape [as 別名]
def perform(self, node, inputs, outputs):
        (x, s) = inputs
        (z,) = outputs
        M, N = x.shape
        assert x.format == 'csc'
        assert s.shape == (M,)

        indices = x.indices
        indptr = x.indptr

        y_data = x.data.copy()

        for j in xrange(0, N):
            for i_idx in xrange(indptr[j], indptr[j + 1]):
                y_data[i_idx] *= s[indices[i_idx]]

        z[0] = scipy.sparse.csc_matrix((y_data, indices, indptr), (M, N)) 
開發者ID:rizar,項目名稱:attention-lvcsr,代碼行數:19,代碼來源:basic.py

示例9: build_transition_cost

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import shape [as 別名]
def build_transition_cost(logits, targets, num_transitions):
    """
    Build a parse action prediction cost function.
    """

    # swap seq_length dimension to front so that we can scan per timestep
    logits = T.swapaxes(logits, 0, 1)
    targets = targets.T

    def cost_t(logits, tgt, num_transitions):
        # TODO(jongauthier): Taper down xent cost as we proceed through
        # sequence?
        predicted_dist = T.nnet.softmax(logits)
        cost = T.nnet.categorical_crossentropy(predicted_dist, tgt)

        pred = T.argmax(logits, axis=1)
        error = T.neq(pred, tgt)
        return cost, error

    results, _ = theano.scan(cost_t, [logits, targets], non_sequences=[num_transitions])
    costs, errors = results

    # Create a mask that selects only transitions that involve real data.
    unrolling_length = T.shape(costs)[0]
    padding = unrolling_length - num_transitions
    padding = T.reshape(padding, (1, -1))
    rng = T.arange(unrolling_length) + 1
    rng = T.reshape(rng, (-1, 1))
    mask = T.gt(rng, padding)

    # Compute acc using the mask
    acc = 1.0 - (T.sum(errors * mask, dtype=theano.config.floatX)
                 / T.sum(num_transitions, dtype=theano.config.floatX))

    # Compute cost directly, since we *do* want a cost incentive to get the padding
    # transitions right.
    cost = T.mean(costs)
    return cost, acc 
開發者ID:stanfordnlp,項目名稱:spinn,代碼行數:40,代碼來源:classifier.py

示例10: __eq__

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import shape [as 別名]
def __eq__(self, other):
        (a, b), (x, y) = self, other
        return (a == x and
                (b.dtype == y.dtype) and
                (type(b) == type(y)) and
                (b.shape == y.shape) and
                (abs(b - y).sum() < 1e-6 * b.nnz)) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:9,代碼來源:basic.py

示例11: __str__

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import shape [as 別名]
def __str__(self):
        return '%s{%s,%s,shape=%s,nnz=%s}' % (
            self.__class__.__name__,
            self.format,
            self.dtype,
            self.data.shape,
            self.data.nnz) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:9,代碼來源:basic.py

示例12: csm_shape

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import shape [as 別名]
def csm_shape(csm):
    """
    Return the shape field of the sparse variable.

    """
    return csm_properties(csm)[3] 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:8,代碼來源:basic.py

示例13: make_node

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import shape [as 別名]
def make_node(self, data, indices, indptr, shape):
        data = tensor.as_tensor_variable(data)

        if not isinstance(indices, gof.Variable):
            indices_ = numpy.asarray(indices)
            indices_32 = theano._asarray(indices, dtype='int32')
            assert (indices_ == indices_32).all()
            indices = indices_32
        if not isinstance(indptr, gof.Variable):
            indptr_ = numpy.asarray(indptr)
            indptr_32 = theano._asarray(indptr, dtype='int32')
            assert (indptr_ == indptr_32).all()
            indptr = indptr_32
        if not isinstance(shape, gof.Variable):
            shape_ = numpy.asarray(shape)
            shape_32 = theano._asarray(shape, dtype='int32')
            assert (shape_ == shape_32).all()
            shape = shape_32

        indices = tensor.as_tensor_variable(indices)
        indptr = tensor.as_tensor_variable(indptr)
        shape = tensor.as_tensor_variable(shape)

        if data.type.ndim != 1:
            raise TypeError('data argument must be a vector', data.type,
                            data.type.ndim)
        if indices.type.ndim != 1 or indices.type.dtype not in discrete_dtypes:
            raise TypeError('indices must be vector of integers', indices,
                            indices.type)
        if indptr.type.ndim != 1 or indptr.type.dtype not in discrete_dtypes:
            raise TypeError('indices must be vector of integers', indptr,
                            indptr.type)
        if shape.type.ndim != 1 or shape.type.dtype not in discrete_dtypes:
            raise TypeError('n_rows must be integer type', shape, shape.type)

        return gof.Apply(self,
                         [data, indices, indptr, shape],
                         [SparseType(dtype=data.type.dtype,
                                     format=self.format)()]) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:41,代碼來源:basic.py


注:本文中的theano.tensor.shape方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。