當前位置: 首頁>>代碼示例>>Python>>正文


Python tensor.scalar方法代碼示例

本文整理匯總了Python中theano.tensor.scalar方法的典型用法代碼示例。如果您正苦於以下問題:Python tensor.scalar方法的具體用法?Python tensor.scalar怎麽用?Python tensor.scalar使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在theano.tensor的用法示例。


在下文中一共展示了tensor.scalar方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _make_rnn

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import scalar [as 別名]
def _make_rnn(self, seq_length=4):
        self.embedding_dim = embedding_dim = 3
        self.vocab_size = vocab_size = 10
        self.seq_length = seq_length
        
        def compose_network(h_prev, inp, embedding_dim, model_dim, vs, name="compose"):
            # Just add the two embeddings!
            W = T.concatenate([T.eye(model_dim), T.eye(model_dim)], axis=0)
            i = T.concatenate([h_prev, inp], axis=1)
            return i.dot(W)

        X = T.imatrix("X")
        training_mode = T.scalar("training_mode")
        vs = VariableStore()
        embeddings = np.arange(vocab_size).reshape(
            (vocab_size, 1)).repeat(embedding_dim, axis=1)
        self.model = RNN(
            embedding_dim, embedding_dim, vocab_size, seq_length, compose_network,
            IdentityLayer, training_mode, None, vs,
            X=X, make_test_fn=True, initial_embeddings=embeddings) 
開發者ID:stanfordnlp,項目名稱:spinn,代碼行數:22,代碼來源:test_plain_rnn.py

示例2: __init__

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import scalar [as 別名]
def __init__(self):
        X_in = T.matrix('X_in')
        u = T.matrix('u')
        s = T.vector('s')
        eps = T.scalar('eps')

        X_ = X_in - T.mean(X_in, 0)
        sigma = T.dot(X_.T, X_) / X_.shape[0]
        self.sigma = theano.function([X_in], sigma, allow_input_downcast=True)

        Z = T.dot(T.dot(u, T.nlinalg.diag(1. / T.sqrt(s + eps))), u.T)
        X_zca = T.dot(X_, Z.T)
        self.compute_zca = theano.function([X_in, u, s, eps], X_zca, allow_input_downcast=True)

        self._u = None
        self._s = None 
開發者ID:iamshang1,項目名稱:Projects,代碼行數:18,代碼來源:preprocessing.py

示例3: var

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import scalar [as 別名]
def var(name, label=None, observed=False, const=False, vector=False, lower=None, upper=None):
    if vector and not observed:
        raise ValueError('Currently, only observed variables can be vectors')

    if observed and const:
        raise ValueError('Observed variables are automatically const')

    if vector:
        var = T.vector(name)
    else:
        var = T.scalar(name)

    var._name = name
    var._label = label
    var._observed = observed
    var._const = observed or const
    var._lower = lower or -np.inf
    var._upper = upper or np.inf

    return var 
開發者ID:ibab,項目名稱:python-mle,代碼行數:22,代碼來源:variable.py

示例4: make_node

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import scalar [as 別名]
def make_node(self, x, index):
        x = as_sparse_variable(x)
        assert x.format in ["csr", "csc"]
        assert len(index) == 2

        input_op = [x]

        for ind in index:

            if isinstance(ind, slice):
                raise Exception("GetItemScalar called with a slice as index!")

            # in case of indexing using int instead of theano variable
            elif isinstance(ind, integer_types):
                ind = theano.tensor.constant(ind)
                input_op += [ind]

            # in case of indexing using theano variable
            elif ind.ndim == 0:
                input_op += [ind]
            else:
                raise NotImplemented()

        return gof.Apply(self, input_op, [tensor.scalar(dtype=x.dtype)]) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:26,代碼來源:basic.py

示例5: structured_monoid

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import scalar [as 別名]
def structured_monoid(tensor_op):
    # Generic operation to perform many kinds of monoid element-wise
    # operations on the non-zeros of a sparse matrix.

    # The first parameter must always be a sparse matrix. The other parameters
    # must be scalars which will be passed as argument to the tensor_op.

    def decorator(f):
        def wrapper(*args):
            x = as_sparse_variable(args[0])
            assert x.format in ["csr", "csc"]

            xs = [scalar.as_scalar(arg) for arg in args[1:]]

            data, ind, ptr, shape = csm_properties(x)

            data = tensor_op(data, *xs)

            return CSM(x.format)(data, ind, ptr, shape)
        wrapper.__name__ = str(tensor_op.scalar_op)
        return wrapper
    return decorator 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:24,代碼來源:basic.py

示例6: perform

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import scalar [as 別名]
def perform(self, node, inputs, outputs):
        (a_indices, a_indptr, b, g_ab) = inputs
        (out,) = outputs
        g_a_data = numpy.zeros(a_indices.shape, dtype=g_ab.dtype)
        for j in xrange(len(a_indptr) - 1):
            ind0 = a_indptr[j]
            ind1 = a_indptr[j + 1]
            for i_idx in xrange(ind0, ind1):
                i = a_indices[i_idx]
                # Depending on the type of g_ab and b (sparse or dense),
                # the following dot product can result in a scalar or
                # a (1, 1) sparse matrix.
                dot_val = numpy.dot(g_ab[i], b[j].T)
                if isinstance(dot_val, scipy.sparse.spmatrix):
                    dot_val = dot_val[0, 0]
                g_a_data[i_idx] = dot_val
        out[0] = g_a_data 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:19,代碼來源:basic.py

示例7: test_broadcast_grad

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import scalar [as 別名]
def test_broadcast_grad():
    rng = numpy.random.RandomState(utt.fetch_seed())
    x1 = T.tensor4('x')
    x1_data = rng.randn(1, 1, 300, 300)
    sigma = T.scalar('sigma')
    sigma_data = 20
    window_radius = 3

    filter_1d = T.arange(-window_radius, window_radius+1)
    filter_1d = filter_1d.astype(theano.config.floatX)
    filter_1d = T.exp(-0.5*filter_1d**2/sigma**2)
    filter_1d = filter_1d / filter_1d.sum()

    filter_W = filter_1d.dimshuffle(['x', 'x', 0, 'x'])

    y = theano.tensor.nnet.conv2d(x1, filter_W, border_mode='full',
                                  filter_shape=[1, 1, None, None])
    theano.grad(y.sum(), sigma) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:20,代碼來源:test_conv.py

示例8: test_perform

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import scalar [as 別名]
def test_perform(self):
        x = tensor.matrix()
        y = tensor.scalar()
        f = function([x, y], fill_diagonal(x, y))
        for shp in [(8, 8), (5, 8), (8, 5)]:
            a = numpy.random.rand(*shp).astype(config.floatX)
            val = numpy.cast[config.floatX](numpy.random.rand())
            out = f(a, val)
            # We can't use numpy.fill_diagonal as it is bugged.
            assert numpy.allclose(numpy.diag(out), val)
            assert (out == val).sum() == min(a.shape)

        # test for 3d tensor
        a = numpy.random.rand(3, 3, 3).astype(config.floatX)
        x = tensor.tensor3()
        y = tensor.scalar()
        f = function([x, y], fill_diagonal(x, y))
        val = numpy.cast[config.floatX](numpy.random.rand() + 10)
        out = f(a, val)
        # We can't use numpy.fill_diagonal as it is bugged.
        assert out[0, 0, 0] == val
        assert out[1, 1, 1] == val
        assert out[2, 2, 2] == val
        assert (out == val).sum() == min(a.shape) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:26,代碼來源:test_extra_ops.py

示例9: test_gemm_nested

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import scalar [as 別名]
def test_gemm_nested():
    X, Y, Z, a, b = T.matrix('X'), T.matrix('Y'), T.matrix('Z'), T.scalar(
        'a'), T.scalar('b')
    R, S, U, c, d = T.matrix('R'), T.matrix('S'), T.matrix('U'), T.scalar(
        'c'), T.scalar('d')

    just_gemm([X, Y, Z, R, S, U, a, b, c, d],
            [a * Z - b * (c * T.dot(X, Y) + d * Z)],
            ishapes=[(2, 3), (3, 4), (2, 4), (2, 3), (3, 4), (
                2, 4), (), (), (), ()],
            max_graphlen=1)
    # print "---------------------"
    just_gemm([X, Y, Z, R, S, U, a, b, c, d],
            [a * Z - b * (c * T.dot(X, Y) + d * Z + c * Z)],
            ishapes=[(2, 3), (3, 4), (2, 4), (2, 3), (3, 4), (
                2, 4), (), (), (), ()],
            max_graphlen=1)
    # print "---------------------"
    just_gemm([X, Y, Z, R, S, U, a, b, c, d],
            [a * Z - b * (c * T.dot(X, Y) + d * Z + c * U)],
            ishapes=[(2, 3), (3, 4), (2, 4), (2, 3), (3, 4), (
                2, 4), (), (), (), ()],
            max_graphlen=3) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:25,代碼來源:test_blas.py

示例10: test_inplace0

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import scalar [as 別名]
def test_inplace0():
    # should fail to insert gemm_inplace because gemm_inplace would
    # create cycles
    X, Y, Z, a, b = T.matrix('X'), T.matrix('Y'), T.matrix('Z'), T.scalar(
        'a'), T.scalar('b')
    R, S, c = T.matrix('R'), T.matrix('S'), T.scalar('c')

    f = inplace_func([Z, b, R, S],
            [Z * (Z + b * T.dot(R, S).T)], mode='FAST_RUN')
    if (gemm_inplace in [n.op for n in f.maker.fgraph.apply_nodes]):
        print(pp(f.maker.fgraph.outputs[0]))
        raise Failure('gemm_inplace in graph')
    assert gemm_no_inplace in [n.op for n in f.maker.fgraph.apply_nodes]

    # gemm_inplace should be inserted here, to work in-place on Z*c
    f = inplace_func([X, Y, Z, a, b, R, S, c],
            [Z * (c * Z + a * T.dot(X, Y) + b * T.dot(R, S).T)],
            mode='FAST_RUN')
    if (not gemm_inplace in [n.op for n in f.maker.fgraph.apply_nodes]):
        theano.printing.debugprint(f)
        raise Failure('no gemm_inplace in graph') 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:23,代碼來源:test_blas.py

示例11: test_c

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import scalar [as 別名]
def test_c(self):
        if not theano.config.cxx:
            raise SkipTest("G++ not available, so we need to skip this test.")

        for dtype in ["floatX", "complex64", "complex128", "int8", "uint8"]:
            self.with_linker(gof.CLinker(), scalar.add, dtype=dtype)
            self.with_linker(gof.CLinker(), scalar.mul, dtype=dtype)
        for dtype in ["floatX", "int8", "uint8"]:
            self.with_linker(gof.CLinker(), scalar.minimum, dtype=dtype)
            self.with_linker(gof.CLinker(), scalar.maximum, dtype=dtype)
            self.with_linker(gof.CLinker(), scalar.and_, dtype=dtype,
                             tensor_op=tensor.all)
            self.with_linker(gof.CLinker(), scalar.or_, dtype=dtype,
                             tensor_op=tensor.any)
        for dtype in ["int8", "uint8"]:
            self.with_linker(gof.CLinker(), scalar.or_, dtype=dtype)
            self.with_linker(gof.CLinker(), scalar.and_, dtype=dtype)
            self.with_linker(gof.CLinker(), scalar.xor, dtype=dtype) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:20,代碼來源:test_elemwise.py

示例12: test_infer_shape

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import scalar [as 別名]
def test_infer_shape(self, dtype=None, pre_scalar_op=None):
        if dtype is None:
            dtype = theano.config.floatX
        for xsh, tosum in self.cases:
            x = self.type(dtype, [(entry == 1) for entry in xsh])('x')
            if pre_scalar_op is not None:
                x = pre_scalar_op(x)
            if tosum is None:
                tosum = list(range(len(xsh)))
            xv = numpy.asarray(numpy.random.rand(*xsh), dtype=dtype)
            d = {}
            if pre_scalar_op is not None:
                xv = x.eval({x.owner.inputs[0]: xv})
                d = {pre_scalar_op: pre_scalar_op}
            self._compile_and_check([x],
                                    [self.op(scalar.add, axis=tosum, *d)(x)],
                                    [xv], self.op,
                                    ["local_cut_useless_reduce"],
                                    warn=0 not in xsh) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:21,代碼來源:test_elemwise.py

示例13: test_mean_default_dtype

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import scalar [as 別名]
def test_mean_default_dtype(self):
        """
        Test the default dtype of a mean().
        """
        # We try multiple axis combinations even though axis should not matter.
        axes = [None, 0, 1, [], [0], [1], [0, 1]]
        for idx, dtype in enumerate(imap(str, theano.scalar.all_types)):
            axis = axes[idx % len(axes)]
            x = tensor.matrix(dtype=dtype)
            m = x.mean(axis=axis)
            if dtype in tensor.discrete_dtypes and axis != []:
                assert m.dtype == 'float64'
            else:
                assert m.dtype == dtype, (m, m.dtype, dtype)
            f = theano.function([x], m)
            data = numpy.random.rand(3, 4) * 10
            data = data.astype(dtype)
            f(data) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:20,代碼來源:test_elemwise.py

示例14: test_prod_without_zeros_default_dtype

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import scalar [as 別名]
def test_prod_without_zeros_default_dtype(self):
        """
        Test the default dtype of a ProdWithoutZeros().
        """
        # We try multiple axis combinations even though axis should not matter.
        axes = [None, 0, 1, [], [0], [1], [0, 1]]
        for idx, dtype in enumerate(imap(str, theano.scalar.all_types)):
            axis = axes[idx % len(axes)]
            x = ProdWithoutZeros(axis=axis)(tensor.matrix(dtype=dtype))
            assert x.dtype == dict(
                int8='int64',
                int16='int64',
                int32='int64',
                uint8='uint64',
                uint16='uint64',
                uint32='uint64',
            ).get(dtype, dtype) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:19,代碼來源:test_elemwise.py

示例15: test_prod_without_zeros_custom_dtype

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import scalar [as 別名]
def test_prod_without_zeros_custom_dtype(self):
        """
        Test ability to provide your own output dtype for a ProdWithoutZeros().
        """
        # We try multiple axis combinations even though axis should not matter.
        axes = [None, 0, 1, [], [0], [1], [0, 1]]
        idx = 0
        for input_dtype in imap(str, theano.scalar.all_types):
            x = tensor.matrix(dtype=input_dtype)
            for output_dtype in imap(str, theano.scalar.all_types):
                axis = axes[idx % len(axes)]
                prod_woz_var = ProdWithoutZeros(
                        axis=axis, dtype=output_dtype)(x)
                assert prod_woz_var.dtype == output_dtype
                idx += 1
                if ('complex' in output_dtype or
                    'complex' in input_dtype):
                    continue
                f = theano.function([x], prod_woz_var)
                data = numpy.random.rand(2, 3) * 3
                data = data.astype(input_dtype)
                f(data) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:24,代碼來源:test_elemwise.py


注:本文中的theano.tensor.scalar方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。