本文整理匯總了Python中theano.tensor.roll方法的典型用法代碼示例。如果您正苦於以下問題:Python tensor.roll方法的具體用法?Python tensor.roll怎麽用?Python tensor.roll使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類theano.tensor
的用法示例。
在下文中一共展示了tensor.roll方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: add_exploration
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import roll [as 別名]
def add_exploration(recognizer, data, train_conf):
prediction = None
prediction_mask = None
explore_conf = train_conf.get('exploration', 'imitative')
if explore_conf in ['greedy', 'mixed']:
length_expand = 10
prediction = recognizer.get_generate_graph(
n_steps=recognizer.labels.shape[0] + length_expand)['outputs']
prediction_mask = tensor.lt(
tensor.cumsum(tensor.eq(prediction, data.eos_label), axis=0),
1).astype(floatX)
prediction_mask = tensor.roll(prediction_mask, 1, 0)
prediction_mask = tensor.set_subtensor(
prediction_mask[0, :], tensor.ones_like(prediction_mask[0, :]))
if explore_conf == 'mixed':
batch_size = recognizer.labels.shape[1]
targets = tensor.concatenate([
recognizer.labels,
tensor.zeros((length_expand, batch_size), dtype='int64')])
targets_mask = tensor.concatenate([
recognizer.labels_mask,
tensor.zeros((length_expand, batch_size), dtype=floatX)])
rng = MRG_RandomStreams()
generate = rng.binomial((batch_size,), p=0.5, dtype='int64')
prediction = (generate[None, :] * prediction +
(1 - generate[None, :]) * targets)
prediction_mask = (tensor.cast(generate[None, :] *
prediction_mask, floatX) +
tensor.cast((1 - generate[None, :]) *
targets_mask, floatX))
prediction_mask = theano.gradient.disconnected_grad(prediction_mask)
elif explore_conf != 'imitative':
raise ValueError
return prediction, prediction_mask
示例2: fast_jacobian
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import roll [as 別名]
def fast_jacobian(expr, wrt, chunk_size=16, func=None):
'''
Computes the jacobian by tiling the inputs
Copied from https://gist.github.com/aam-at/2b2bc5c35850b553d4ec
'''
assert isinstance(expr, Variable), \
"tensor.jacobian expects a Variable as `expr`"
assert expr.ndim < 2, \
("tensor.jacobian expects a 1 dimensional variable as "
"`expr`. If not use flatten to make it a vector")
num_chunks = tt.ceil(1.0 * expr.shape[0] / chunk_size)
num_chunks = tt.cast(num_chunks, 'int32')
steps = tt.arange(num_chunks)
remainder = expr.shape[0] % chunk_size
def chunk_grad(i):
''' operates on a subset of the gradient variables '''
wrt_rep = tt.tile(wrt, (chunk_size, 1))
if func is not None:
expr_rep = func(wrt_rep)
else:
expr_rep, _ = theano.scan(
fn=lambda wrt_: theano.clone(expr, {wrt: wrt_}),
sequences=wrt_rep)
chunk_expr_grad = tt.roll(
tt.identity_like(expr_rep),
i * chunk_size,
axis=1)
return tt.grad(cost=None,
wrt=wrt_rep,
known_grads={
expr_rep: chunk_expr_grad
})
grads, _ = theano.scan(chunk_grad, sequences=steps)
grads = grads.reshape((chunk_size * grads.shape[0], wrt.shape[0]))
jac = ifelse.ifelse(tt.eq(remainder, 0), grads, grads[:expr.shape[0], :])
return jac
示例3: activation
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import roll [as 別名]
def activation(self, network, in_vw):
in_var = in_vw.variable
return in_var * T.roll(in_var, shift=1, axis=1)
示例4: get_output_for
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import roll [as 別名]
def get_output_for(self, input, **kwargs):
def norm_fn(f, mask, label, previous, W_sim):
# f: inst * class, mask: inst, previous: inst * class, W_sim: class * class
next = previous.dimshuffle(0, 1, 'x') + f.dimshuffle(0, 'x', 1) + W_sim.dimshuffle('x', 0, 1)
if COST:
next = next + COST_CONST * (1.0 - T.extra_ops.to_one_hot(label, self.num_classes).dimshuffle(0, 'x', 1))
# next: inst * prev * cur
next = theano_logsumexp(next, axis = 1)
# next: inst * class
mask = mask.dimshuffle(0, 'x')
next = previous * (1.0 - mask) + next * mask
return next
f = T.dot(input, self.W)
# f: inst * time * class
initial = f[:, 0, :]
if CRF_INIT:
initial = initial + self.W_init[0].dimshuffle('x', 0)
if COST:
initial = initial + COST_CONST * (1.0 - T.extra_ops.to_one_hot(self.label_input[:, 0], self.num_classes))
outputs, _ = theano.scan(fn = norm_fn, \
sequences = [f.dimshuffle(1, 0, 2)[1: ], self.mask_input.dimshuffle(1, 0)[1: ], self.label_input.dimshuffle(1, 0)[1:]], \
outputs_info = initial, non_sequences = [self.W_sim], strict = True)
norm = T.sum(theano_logsumexp(outputs[-1], axis = 1))
f_pot = (f.reshape((-1, f.shape[-1]))[T.arange(f.shape[0] * f.shape[1]), self.label_input.flatten()] * self.mask_input.flatten()).sum()
if CRF_INIT:
f_pot += self.W_init[0][self.label_input[:, 0]].sum()
labels = self.label_input
# labels: inst * time
shift_labels = T.roll(labels, -1, axis = 1)
mask = self.mask_input
# mask : inst * time
shift_mask = T.roll(mask, -1, axis = 1)
g_pot = (self.W_sim[labels.flatten(), shift_labels.flatten()] * mask.flatten() * shift_mask.flatten()).sum()
return - (f_pot + g_pot - norm) / f.shape[0]
示例5: evaluate
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import roll [as 別名]
def evaluate(self, application_call, outputs, mask=None, **kwargs):
# We assume the data has axes (time, batch, features, ...)
batch_size = outputs.shape[1]
# Prepare input for the iterative part
states = dict_subset(kwargs, self._state_names, must_have=False)
# masks in context are optional (e.g. `attended_mask`)
contexts = dict_subset(kwargs, self._context_names, must_have=False)
feedback = self.readout.feedback(outputs)
inputs = self.fork.apply(feedback, as_dict=True)
# Run the recurrent network
results = self.transition.apply(
mask=mask, return_initial_states=True, as_dict=True,
**dict_union(inputs, states, contexts))
# Separate the deliverables. The last states are discarded: they
# are not used to predict any output symbol. The initial glimpses
# are discarded because they are not used for prediction.
# Remember, glimpses are computed _before_ output stage, states are
# computed after.
states = OrderedDict((name, results[name][:-1]) for name in self._state_names)
glimpses = OrderedDict((name, results[name][1:]) for name in self._glimpse_names)
# Compute the cost
feedback = tensor.roll(feedback, 1, 0)
feedback = tensor.set_subtensor(
feedback[0],
self.readout.feedback(self.readout.initial_outputs(batch_size)))
# Run the language model
if self.language_model:
lm_states = self.language_model.evaluate(
outputs=outputs, mask=mask, as_dict=True)
lm_states = {'lm_' + name: value for name, value
in lm_states.items()}
else:
lm_states = {}
readouts = self.readout.readout(
feedback=feedback,
**dict_union(lm_states, states, glimpses, contexts))
costs = self.readout.cost(readouts, outputs)
if mask is not None:
costs *= mask
for name, variable in list(glimpses.items()) + list(states.items()):
application_call.add_auxiliary_variable(
variable.copy(), name=name)
# This variables can be used to initialize the initial states of the
# next batch using the last states of the current batch.
for name in self._state_names + self._glimpse_names:
application_call.add_auxiliary_variable(
results[name][-1].copy(), name=name+"_final_value")
return [costs] + states.values() + glimpses.values()