當前位置: 首頁>>代碼示例>>Python>>正文


Python tensor.outer方法代碼示例

本文整理匯總了Python中theano.tensor.outer方法的典型用法代碼示例。如果您正苦於以下問題:Python tensor.outer方法的具體用法?Python tensor.outer怎麽用?Python tensor.outer使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在theano.tensor的用法示例。


在下文中一共展示了tensor.outer方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: perform

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import outer [as 別名]
def perform(self, node, inputs, outputs):
        # Kalbfleisch and Lawless, J. Am. Stat. Assoc. 80 (1985) Equation 3.4
        # Kind of... You need to do some algebra from there to arrive at
        # this expression.
        (A, gA) = inputs
        (out,) = outputs
        w, V = scipy.linalg.eig(A, right=True)
        U = scipy.linalg.inv(V).T

        exp_w = numpy.exp(w)
        X = numpy.subtract.outer(exp_w, exp_w) / numpy.subtract.outer(w, w)
        numpy.fill_diagonal(X, exp_w)
        Y = U.dot(V.T.dot(gA).dot(U) * X).dot(V.T)

        with warnings.catch_warnings():
            warnings.simplefilter("ignore", numpy.ComplexWarning)
            out[0] = Y.astype(A.dtype) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:19,代碼來源:slinalg.py

示例2: compute_kernel

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import outer [as 別名]
def compute_kernel(lls, lsf, x, z):

    ls = T.exp(lls)
    sf = T.exp(lsf)

    if x.ndim == 1:
        x = x[ None, : ]

    if z.ndim == 1:
        z = z[ None, : ]

    lsre = T.outer(T.ones_like(x[ :, 0 ]), ls)

    r2 = T.outer(T.sum(x * x / lsre, 1), T.ones_like(z[ : , 0 : 1 ])) - np.float32(2) * \
        T.dot(x / lsre, T.transpose(z)) + T.dot(np.float32(1.0) / lsre, T.transpose(z)**2)

    k = sf * T.exp(-np.float32(0.5) * r2)

    return k 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:21,代碼來源:gauss.py

示例3: compute_kernel_numpy

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import outer [as 別名]
def compute_kernel_numpy(lls, lsf, x, z):

    ls = np.exp(lls)
    sf = np.exp(lsf)

    if x.ndim == 1:
        x= x[ None, : ]

    if z.ndim == 1:
        z= z[ None, : ]

    lsre = np.outer(np.ones(x.shape[ 0 ]), ls)

    r2 = np.outer(np.sum(x * x / lsre, 1), np.ones(z.shape[ 0 ])) - 2 * np.dot(x / lsre, z.T) + np.dot(1.0 / lsre, z.T **2)

    k = sf * np.exp(-0.5*r2)

    return k

##
# xmean and xvar can be vectors of input points
#
# This is the expected value of the kernel
# 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:26,代碼來源:gauss.py

示例4: compute_psi1

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import outer [as 別名]
def compute_psi1(lls, lsf, xmean, xvar, z):

    if xmean.ndim == 1:
        xmean = xmean[ None, : ]

    ls = T.exp(lls)
    sf = T.exp(lsf)
    lspxvar = ls + xvar
    constterm1 = ls / lspxvar
    constterm2 = T.prod(T.sqrt(constterm1), 1)
    r2_psi1 = T.outer(T.sum(xmean * xmean / lspxvar, 1), T.ones_like(z[ : , 0 : 1 ])) \
        - np.float32(2) * T.dot(xmean / lspxvar, T.transpose(z)) + \
        T.dot(np.float32(1.0) / lspxvar, T.transpose(z)**2)
    psi1 = sf * T.outer(constterm2, T.ones_like(z[ : , 0 : 1 ])) * T.exp(-np.float32(0.5) * r2_psi1)

    return psi1 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:18,代碼來源:gauss.py

示例5: sample

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import outer [as 別名]
def sample(self, n_samples):
        '''
        Inspired by jbornschein's implementation.
        '''

        z0 = T.zeros((n_samples, self.dim,)).astype(floatX) + T.shape_padleft(self.b)
        rs = self.trng.uniform((self.dim, n_samples), dtype=floatX)

        def _step_sample(i, W_i, r_i, z):
            p_i = T.nnet.sigmoid(z[:, i]) * 0.9999 + 0.000005
            x_i = (r_i <= p_i).astype(floatX)
            z   = z + T.outer(x_i, W_i)
            return z, x_i

        seqs = [T.arange(self.dim), self.W, rs]
        outputs_info = [z0, None]
        non_seqs = []

        (zs, x), updates = scan(_step_sample, seqs, outputs_info, non_seqs,
                                self.dim)

        return x.T, updates 
開發者ID:rdevon,項目名稱:cortex_old,代碼行數:24,代碼來源:darn.py

示例6: __init__

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import outer [as 別名]
def __init__(self,dataset,dictionary_size=50000,embedding_size=50,skip_window=5,learning_rate=0.1,negative_sampling=25):
        self.ds = dictionary_size
        self.es = embedding_size
        self.sw = skip_window
        self.lr = learning_rate
        self.ns = negative_sampling
        self._tokenize(dataset)
        
        #nn architecture
        self.input = T.matrix()
        self.w1 = theano.shared((np.random.rand(self.ds,self.es).astype(theano.config.floatX)-0.5),borrow=True)
        self.activeidx = T.ivector()
        self.activew1 = T.take(self.w1, self.activeidx, axis=0)
        self.l1out = T.dot(self.input,self.activew1)
        self.w2 = theano.shared((np.random.rand(self.es,self.ds).astype(theano.config.floatX)-0.5),borrow=True)
        self.sampidx = T.ivector()
        self.sampw2 = T.take(self.w2, self.sampidx, axis=1)
        self.l2out = T.nnet.softmax(T.dot(self.l1out,self.sampw2))
        self.target = T.matrix()
       
        #nn functions
        self.z = (self.l2out - self.target).T
        self.w1update = T.set_subtensor(self.w1[self.activeidx,:], self.w1[self.activeidx,:] - T.dot(self.sampw2, self.z).flatten()*self.lr)
        self.w2update = T.set_subtensor(self.w2[:,self.sampidx], self.w2[:,self.sampidx] - T.outer(self.z, self.l1out).T*self.lr)
        self.propogate = theano.function([self.input,self.target,self.activeidx,self.sampidx],\
            updates = [(self.w1,self.w1update),(self.w2,self.w2update)],allow_input_downcast=True) 
開發者ID:iamshang1,項目名稱:Projects,代碼行數:28,代碼來源:cbow_theano.py

示例7: grad

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import outer [as 別名]
def grad(self, inputs, cost_grad):
        """
        In defining the gradient, the Finite Fourier Transform is viewed as
        a complex-differentiable function of a complex variable
        """
        a = inputs[0]
        n = inputs[1]
        axis = inputs[2]
        grad = cost_grad[0]
        if not isinstance(axis, tensor.TensorConstant):
            raise NotImplementedError('%s: gradient is currently implemented'
                                      ' only for axis being a Theano constant'
                                      % self.__class__.__name__)
        axis = int(axis.data)
        # notice that the number of actual elements in wrto is independent of
        # possible padding or truncation:
        elem = tensor.arange(0, tensor.shape(a)[axis], 1)
        # accounts for padding:
        freq = tensor.arange(0, n, 1)
        outer = tensor.outer(freq, elem)
        pow_outer = tensor.exp(((-2 * math.pi * 1j) * outer) / (1. * n))
        res = tensor.tensordot(grad, pow_outer, (axis, 0))

        # This would be simpler but not implemented by theano:
        # res = tensor.switch(tensor.lt(n, tensor.shape(a)[axis]),
        # tensor.set_subtensor(res[...,n::], 0, False, False), res)

        # Instead we resort to that to account for truncation:
        flip_shape = list(numpy.arange(0, a.ndim)[::-1])
        res = res.dimshuffle(flip_shape)
        res = tensor.switch(tensor.lt(n, tensor.shape(a)[axis]),
                            tensor.set_subtensor(res[n::, ], 0, False, False),
                            res)
        res = res.dimshuffle(flip_shape)

        # insures that gradient shape conforms to input shape:
        out_shape = list(numpy.arange(0, axis)) + [a.ndim - 1] +\
            list(numpy.arange(axis, a.ndim - 1))
        res = res.dimshuffle(*out_shape)
        return [res, None, None] 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:42,代碼來源:fourier.py

示例8: test_outer

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import outer [as 別名]
def test_outer(self):
        f = self.function([self.x, self.y], T.outer(self.x, self.y))
        self.assertFunctionContains(f, self.ger_destructive)
        f(numpy.random.rand(5).astype(self.dtype),
          numpy.random.rand(4).astype(self.dtype)) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:7,代碼來源:test_blas.py

示例9: test_A_plus_outer

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import outer [as 別名]
def test_A_plus_outer(self):
        f = self.function([self.A, self.x, self.y],
                self.A + T.outer(self.x, self.y))
        self.assertFunctionContains(f, self.ger)
        f(numpy.random.rand(5, 4).astype(self.dtype),
          numpy.random.rand(5).astype(self.dtype),
          numpy.random.rand(4).astype(self.dtype))
        f(numpy.random.rand(5, 4).astype(self.dtype)[::-1, ::-1],
          numpy.random.rand(5).astype(self.dtype),
          numpy.random.rand(4).astype(self.dtype)) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:12,代碼來源:test_blas.py

示例10: test_A_plus_scaled_outer

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import outer [as 別名]
def test_A_plus_scaled_outer(self):
        f = self.function([self.A, self.x, self.y],
                self.A + 0.1 * T.outer(self.x, self.y))
        self.assertFunctionContains(f, self.ger)
        f(numpy.random.rand(5, 4).astype(self.dtype),
          numpy.random.rand(5).astype(self.dtype),
          numpy.random.rand(4).astype(self.dtype))
        f(numpy.random.rand(5, 4).astype(self.dtype)[::-1, ::-1],
          numpy.random.rand(5).astype(self.dtype),
          numpy.random.rand(4).astype(self.dtype)) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:12,代碼來源:test_blas.py

示例11: test_scaled_A_plus_scaled_outer

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import outer [as 別名]
def test_scaled_A_plus_scaled_outer(self):
        f = self.function([self.A, self.x, self.y],
                          numpy.asarray(0.2, self.dtype) * self.A +
                          numpy.asarray(0.1, self.dtype) * T.outer(
                self.x, self.y))
        # Why gemm? This make the graph simpler did we test that it
        # make it faster?
        self.assertFunctionContains(f, self.gemm)
        f(numpy.random.rand(5, 4).astype(self.dtype),
          numpy.random.rand(5).astype(self.dtype),
          numpy.random.rand(4).astype(self.dtype))
        f(numpy.random.rand(5, 4).astype(self.dtype)[::-1, ::-1],
          numpy.random.rand(5).astype(self.dtype),
          numpy.random.rand(4).astype(self.dtype)) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:16,代碼來源:test_blas.py

示例12: test_inplace

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import outer [as 別名]
def test_inplace(self):
        A = self.shared(numpy.random.rand(4, 5).astype(self.dtype))
        f = self.function([self.x, self.y], [],
                          updates=[(A, A + T.constant(0.1, dtype=self.dtype) *
                                   T.outer(self.x, self.y))])
        self.assertFunctionContains(f, self.ger_destructive)
        f(numpy.random.rand(4).astype(self.dtype),
          numpy.random.rand(5).astype(self.dtype))

        A.set_value(
            A.get_value(borrow=True, return_internal_type=True)[::-1, ::-1],
            borrow=True)
        f(numpy.random.rand(4).astype(self.dtype),
          numpy.random.rand(5).astype(self.dtype)) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:16,代碼來源:test_blas.py

示例13: test_optimization_pipeline

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import outer [as 別名]
def test_optimization_pipeline(self):
        f = self.function([self.x, self.y], tensor.outer(self.x, self.y))
        self.assertFunctionContains(f, CGer(destructive=True))
        f(self.xval, self.yval)  # DebugMode tests correctness 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:6,代碼來源:test_blas_c.py

示例14: test_optimization_pipeline_float

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import outer [as 別名]
def test_optimization_pipeline_float(self):
        self.setUp('float32')
        f = self.function([self.x, self.y], tensor.outer(self.x, self.y))
        self.assertFunctionContains(f, CGer(destructive=True))
        f(self.xval, self.yval)  # DebugMode tests correctness 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:7,代碼來源:test_blas_c.py

示例15: test_int_fails

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import outer [as 別名]
def test_int_fails(self):
        self.setUp('int32')
        f = self.function([self.x, self.y], tensor.outer(self.x, self.y))
        self.assertFunctionContains0(f, CGer(destructive=True))
        self.assertFunctionContains0(f, CGer(destructive=False)) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:7,代碼來源:test_blas_c.py


注:本文中的theano.tensor.outer方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。