當前位置: 首頁>>代碼示例>>Python>>正文


Python tensor.or_方法代碼示例

本文整理匯總了Python中theano.tensor.or_方法的典型用法代碼示例。如果您正苦於以下問題:Python tensor.or_方法的具體用法?Python tensor.or_怎麽用?Python tensor.or_使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在theano.tensor的用法示例。


在下文中一共展示了tensor.or_方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: sgdmgc

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import or_ [as 別名]
def sgdmgc(cost, params, lr=1.0, alpha=0.1, max_magnitude=5.0, infDecay=0.1):
    """SGD with momentum and gradient clipping"""
    grads = T.grad(cost=cost, wrt=params)
    updates = []

    norm = norm_gs(params, grads)
    sqrtnorm = T.sqrt(norm)
    not_finite = T.or_(T.isnan(sqrtnorm), T.isinf(sqrtnorm))
    adj_norm_gs = T.switch(T.ge(sqrtnorm, max_magnitude), max_magnitude / sqrtnorm, 1.)

    for p, g in zip(params, grads):
        v = shared(p.get_value() * 0.)
        g = T.switch(not_finite, infDecay * p, g * adj_norm_gs)
        v_new = v * (1.0 - alpha) - alpha * lr * g
        updates.append((v, v_new))
        updates.append((p, p + v_new ))
    
    return updates, norm 
開發者ID:Ivaylo-Popov,項目名稱:Theano-Lights,代碼行數:20,代碼來源:toolbox.py

示例2: gradient_descent

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import or_ [as 別名]
def gradient_descent(self, params, gparams, learning_rate):
        """Momentum GD with gradient clipping."""
        #grad = T.grad(loss, self.params)
        self.momentum_velocity_ = [0.] * len(gparams)
        grad_norm = T.sqrt(sum(map(lambda x: T.sqr(x).sum(), gparams)))
        updates = OrderedDict()
        not_finite = T.or_(T.isnan(grad_norm), T.isinf(grad_norm))
        scaling_den = T.maximum(5.0, grad_norm)
        for n, (param, grad) in enumerate(zip(params, gparams)):
            grad = T.switch(not_finite, 0.1 * param,
                            grad * (5.0 / scaling_den))
            velocity = self.momentum_velocity_[n]
            update_step = self.momentum * velocity - learning_rate * grad
            self.momentum_velocity_[n] = update_step
            updates[param] = param + update_step
        return updates
        
    ##################### calculate total loss #######################    
    # only loss D 
開發者ID:majingCUHK,項目名稱:Rumor_GAN,代碼行數:21,代碼來源:model_GAN_RNN.py

示例3: gradient_descent

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import or_ [as 別名]
def gradient_descent(self, loss):
        """Momentum GD with gradient clipping."""
        grad = T.grad(loss, self.params)
        self.momentum_velocity_ = [0.] * len(grad)
        grad_norm = T.sqrt(sum(map(lambda x: T.sqr(x).sum(), grad)))
        updates = OrderedDict()
        not_finite = T.or_(T.isnan(grad_norm), T.isinf(grad_norm))
        scaling_den = T.maximum(5.0, grad_norm)
        for n, (param, grad) in enumerate(zip(self.params, grad)):
            grad = T.switch(not_finite, 0.1 * param,
                            grad * (5.0 / scaling_den))
            velocity = self.momentum_velocity_[n]
            update_step = self.momentum * velocity - self.learning_rate * grad
            self.momentum_velocity_[n] = update_step
            updates[param] = param + update_step
        return updates 
開發者ID:majingCUHK,項目名稱:Rumor_RvNN,代碼行數:18,代碼來源:TD_RvNN.py

示例4: gradient_clipping

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import or_ [as 別名]
def gradient_clipping(grads, tparams, clip_c=10):
    g2 = 0.
    for g in grads:
        g2 += (g**2).sum()

    g2 = tensor.sqrt(g2)
    not_finite = tensor.or_(tensor.isnan(g2), tensor.isinf(g2))
    new_grads = []

    for p, g in zip(tparams.values(), grads):
        new_grads.append(tensor.switch(g2 > clip_c,
                                       g * (clip_c / g2),
                                       g))

    return new_grads, not_finite, tensor.lt(clip_c, g2) 
開發者ID:nyu-dl,項目名稱:dl4mt-c2c,代碼行數:17,代碼來源:mixer.py

示例5: compute_updates

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import or_ [as 別名]
def compute_updates(self, training_cost, params):
        updates = []
        grads = T.grad(training_cost, params)
        grads = OrderedDict(zip(params, grads))
        # Clip stuff
        c = numpy.float32(self.cutoff)
        clip_grads = []

        norm_gs = T.sqrt(sum(T.sum(g ** 2) for p, g in grads.items()))
        normalization = T.switch(T.ge(norm_gs, c), c / norm_gs, np.float32(1.))
        notfinite = T.or_(T.isnan(norm_gs), T.isinf(norm_gs))
        for p, g in grads.items():
            clip_grads.append((p, T.switch(notfinite, numpy.float32(.1) * p, g * normalization)))

        grads = OrderedDict(clip_grads)

        if self.updater == 'adagrad':
            updates = Adagrad(grads, self.lr)
        elif self.updater == 'sgd':
            raise Exception("Sgd not implemented!")
        elif self.updater == 'adadelta':
            updates = Adadelta(grads)
        elif self.updater == 'rmsprop':
            updates = RMSProp(grads, self.lr)
        elif self.updater == 'adam':
            updates = Adam(grads)
        else:
            raise Exception("Updater not understood!")
        return updates 
開發者ID:sordonia,項目名稱:hred-qs,代碼行數:31,代碼來源:session_encdec.py

示例6: sgdgc

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import or_ [as 別名]
def sgdgc(cost, params, lr=1.0, max_magnitude=5.0, infDecay=0.1):
    """SGD with gradient clipping"""
    grads = T.grad(cost=cost, wrt=params)
    updates = []

    norm = norm_gs(params, grads)
    sqrtnorm = T.sqrt(norm)
    #not_finite = T.or_(T.isnan(sqrtnorm), T.isinf(sqrtnorm))
    adj_norm_gs = T.switch(T.ge(sqrtnorm, max_magnitude), max_magnitude / sqrtnorm, 1.)

    for p, g in zip(params, grads):
        #g = T.switch(not_finite, infDecay * p, g * adj_norm_gs)
        updates.append((p, p - lr * g * adj_norm_gs))  
    
    return updates, norm 
開發者ID:Ivaylo-Popov,項目名稱:Theano-Lights,代碼行數:17,代碼來源:toolbox.py

示例7: adamgc_

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import or_ [as 別名]
def adamgc_(cost, params, lr=0.0002, b1=0.1, b2=0.01, e=1e-8, max_magnitude=5.0, infDecay=0.1):
    updates = []
    grads = T.grad(cost, params)
    
    norm = norm_gs(params, grads)
    sqrtnorm = T.sqrt(norm)
    not_finite = T.or_(T.isnan(sqrtnorm), T.isinf(sqrtnorm))
    adj_norm_gs = T.switch(T.ge(sqrtnorm, max_magnitude), max_magnitude / sqrtnorm, 1.)

    i = shared(floatX(0.))
    i_t = i + 1.
    fix1 = 1. - (1. - b1)**i_t
    fix2 = 1. - (1. - b2)**i_t
    lr_t = lr * (T.sqrt(fix2) / fix1)
    for p, g in zip(params, grads):
        g = T.switch(not_finite, infDecay * p, g * adj_norm_gs)
        m = shared(p.get_value() * 0.)
        v = shared(p.get_value() * 0.)
        m_t = (b1 * g) + ((1. - b1) * m) 
        v_t = (b2 * T.sqr(g)) + ((1. - b2) * v)
        g_t = m_t / (T.sqrt(v_t) + e)
        p_t = p - (lr_t * g_t)

        #e_t = shared(p.get_value() * 0.)
        #de_t = (srnd.normal(p.shape, std = 0.05, dtype=theano.config.floatX)*p_t - e_t)*0.05  #*p_t
        #p_t = p_t + de_t
        #updates.append((e_t, e_t + de_t))

        updates.append((m, m_t))
        updates.append((v, v_t))
        updates.append((p, p_t))
    updates.append((i, i_t))
    return updates, norm 
開發者ID:Ivaylo-Popov,項目名稱:Theano-Lights,代碼行數:35,代碼來源:toolbox.py

示例8: adamgc

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import or_ [as 別名]
def adamgc(cost, params, lr=0.0002, b1=0.1, b2=0.001, e=1e-8, max_magnitude=5.0, infDecay=0.1):
    updates = []
    grads = T.grad(cost, params)
    
    norm = norm_gs(params, grads)
    sqrtnorm = T.sqrt(norm)
    not_finite = T.or_(T.isnan(sqrtnorm), T.isinf(sqrtnorm))
    adj_norm_gs = T.switch(T.ge(sqrtnorm, max_magnitude), max_magnitude / sqrtnorm, 1.)

    i = shared(floatX(0.))
    i_t = i + 1.
    fix1 = 1. - (1. - b1)**i_t
    fix2 = 1. - (1. - b2)**i_t
    lr_t = lr * (T.sqrt(fix2) / fix1)
    for p, g in zip(params, grads):
        g = T.switch(not_finite, infDecay * p, g * adj_norm_gs)
        m = shared(p.get_value() * 0.)
        v = shared(p.get_value() * 0.)
        m_t = (b1 * g) + ((1. - b1) * m) 
        v_t = (b2 * T.sqr(g)) + ((1. - b2) * v)
        g_t = m_t / (T.sqrt(v_t) + e)
        p_t = p - (lr_t * g_t)
        updates.append((m, m_t))
        updates.append((v, v_t))
        updates.append((p, p_t))
    updates.append((i, i_t))
    return updates, norm

#-------------------------------------------------------------------------------------------------- 
開發者ID:Ivaylo-Popov,項目名稱:Theano-Lights,代碼行數:31,代碼來源:toolbox.py

示例9: __init__

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import or_ [as 別名]
def __init__(self, low=0.0, high=1.0):
        """Constructor.

        Parameters
        ----------
        * `low` [float]:
            The lower bound.

        * `high` [float]:
            The upper bound
        """
        super(Uniform, self).__init__(low=low, high=high)

        # pdf
        self.pdf_ = T.switch(
            T.or_(T.lt(self.X, self.low), T.ge(self.X, self.high)),
            0.,
            1. / (self.high - self.low)).ravel()
        self._make(self.pdf_, "pdf")

        # -log pdf
        self.nll_ = T.switch(
            T.or_(T.lt(self.X, self.low), T.ge(self.X, self.high)),
            np.inf,
            T.log(self.high - self.low)).ravel()
        self._make(self.nll_, "nll")

        # cdf
        self.cdf_ = T.switch(
            T.lt(self.X, self.low),
            0.,
            T.switch(
                T.lt(self.X, self.high),
                (self.X - self.low) / (self.high - self.low),
                1.)).ravel()
        self._make(self.cdf_, "cdf")

        # ppf
        self.ppf_ = self.p * (self.high - self.low) + self.low
        self._make(self.ppf_, "ppf", args=[self.p]) 
開發者ID:diana-hep,項目名稱:carl,代碼行數:42,代碼來源:uniform.py

示例10: updates

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import or_ [as 別名]
def updates(self, params, grads, learning_rate, momentum, rescale=5.):
        grad_norm = tensor.sqrt(sum(map(lambda x: tensor.sqr(x).sum(), grads)))
        not_finite = tensor.or_(tensor.isnan(grad_norm),
                                tensor.isinf(grad_norm))
        grad_norm = tensor.sqrt(grad_norm)
        scaling_num = rescale
        scaling_den = tensor.maximum(rescale, grad_norm)
        # Magic constants
        combination_coeff = 0.9
        minimum_grad = 1E-4
        updates = []
        for n, (param, grad) in enumerate(zip(params, grads)):
            grad = tensor.switch(not_finite, 0.1 * param,
                                 grad * (scaling_num / scaling_den))
            old_square = self.running_square_[n]
            new_square = combination_coeff * old_square + (
                1. - combination_coeff) * tensor.sqr(grad)
            old_avg = self.running_avg_[n]
            new_avg = combination_coeff * old_avg + (
                1. - combination_coeff) * grad
            rms_grad = tensor.sqrt(new_square - new_avg ** 2)
            rms_grad = tensor.maximum(rms_grad, minimum_grad)
            memory = self.memory_[n]
            update = momentum * memory - learning_rate * grad / rms_grad
            update2 = momentum * momentum * memory - (
                1 + momentum) * learning_rate * grad / rms_grad
            updates.append((old_square, new_square))
            updates.append((old_avg, new_avg))
            updates.append((memory, update))
            updates.append((param, param + update2))
        return updates 
開發者ID:kastnerkyle,項目名稱:SciPy2015,代碼行數:33,代碼來源:kdl_template.py

示例11: get_output_for

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import or_ [as 別名]
def get_output_for(self, input, deterministic=False, **kwargs):
        if deterministic or self.p == 0:
            return T.ones_like(self.retain, dtype=input.dtype)
        else:
            # Using theano constant to prevent upcasting
            # one = T.constant(1)

            # retain_prob = one - self.p
            # if self.rescale:
            #     input /= retain_prob

            # use nonsymbolic shape for dropout mask if possible
            mask_shape = self.input_shape
            if any(s is None for s in mask_shape):
                mask_shape = input.shape

            # apply dropout, respecting shared axes
            if self.shared_axes:
                shared_axes = tuple(a if a >= 0 else a + input.ndim
                                    for a in self.shared_axes)
                mask_shape = tuple(1 if a in shared_axes else s
                                   for a, s in enumerate(mask_shape))
            mask = self._srng.binomial(mask_shape, p=self.retain,
                                       dtype=input.dtype)
            mask = T.or_(mask, self.previous_mask)
            if self.shared_axes:
                bcast = tuple(bool(s == 1) for s in mask_shape)
                mask = T.patternbroadcast(mask, bcast)
            return mask 
開發者ID:diegma,項目名稱:neural-dep-srl,代碼行數:31,代碼來源:WordDropout.py

示例12: compute_updates

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import or_ [as 別名]
def compute_updates(self, training_cost, params):
        updates = []
         
        grads = T.grad(training_cost, params)
        grads = OrderedDict(zip(params, grads))

        # Gradient clipping
        c = numpy.float32(self.cutoff)
        clip_grads = []
        
        norm_gs = T.sqrt(sum(T.sum(g ** 2) for p, g in grads.items()))
        normalization = T.switch(T.ge(norm_gs, c), c / norm_gs, np.float32(1.))
        notfinite = T.or_(T.isnan(norm_gs), T.isinf(norm_gs))
         
        for p, g in grads.items():
            clip_grads.append((p, T.switch(notfinite, numpy.float32(.1) * p, g * normalization)))
        
        grads = OrderedDict(clip_grads)

        if self.W_emb in grads:
            if self.initialize_from_pretrained_word_embeddings and self.fix_pretrained_word_embeddings:
                assert not self.fix_encoder_parameters
                # Keep pretrained word embeddings fixed
                logger.debug("Will use mask to fix pretrained word embeddings")
                grads[self.W_emb] = grads[self.W_emb] * self.W_emb_pretrained_mask
            elif self.fix_encoder_parameters:
                # If 'fix_encoder_parameters' is on, the word embeddings will be excluded from parameter training set
                logger.debug("Will fix word embeddings to initial embeddings or embeddings from resumed model")
            else:
                logger.debug("Will train all word embeddings")

        optimizer_variables = []
        if self.updater == 'adagrad':
            updates = Adagrad(grads, self.lr)
        elif self.updater == 'sgd':
            raise Exception("Sgd not implemented!")
        elif self.updater == 'adadelta':
            updates = Adadelta(grads)
        elif self.updater == 'rmsprop':
            updates = RMSProp(grads, self.lr)
        elif self.updater == 'adam':
            updates, optimizer_variables = Adam(grads, self.lr)
        else:
            raise Exception("Updater not understood!") 

        return updates, optimizer_variables
  
    # Batch training function. 
開發者ID:julianser,項目名稱:hred-latent-piecewise,代碼行數:50,代碼來源:dialog_encdec.py

示例13: rmsprop

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import or_ [as 別名]
def rmsprop(cost, params, learning_rate, momentum=0.5, rescale=5.):
    
    grads = T.grad(cost=cost, wrt=params)
    
    running_square_ = [theano.shared(np.zeros_like(p.get_value(),dtype=p.dtype), broadcastable=p.broadcastable)
                      for p in params]
    running_avg_ = [theano.shared(np.zeros_like(p.get_value(),dtype=p.dtype), broadcastable=p.broadcastable)
                   for p in params]
    memory_ = [theano.shared(np.zeros_like(p.get_value(),dtype=p.dtype), broadcastable=p.broadcastable)
                       for p in params]
    
    grad_norm = T.sqrt(sum(map(lambda x: T.sqr(x).sum(), grads)))
    not_finite = T.or_(T.isnan(grad_norm), T.isinf(grad_norm))
    grad_norm = T.sqrt(grad_norm)
    scaling_num = rescale
    scaling_den = T.maximum(rescale, grad_norm)
    # Magic constants
    combination_coeff = 0.9
    minimum_grad = 1E-4
    updates = []
    for n, (param, grad) in enumerate(zip(params, grads)):
       grad = T.switch(not_finite, 0.1 * param,
                       grad * (scaling_num / scaling_den))
       old_square = running_square_[n]
       new_square = combination_coeff * old_square + (
           1. - combination_coeff) * T.sqr(grad)
       old_avg = running_avg_[n]
       new_avg = combination_coeff * old_avg + (
           1. - combination_coeff) * grad
       rms_grad = T.sqrt(new_square - new_avg ** 2)
       rms_grad = T.maximum(rms_grad, minimum_grad)
       memory = memory_[n]
       update = momentum * memory - learning_rate * grad / rms_grad

       update2 = momentum * momentum * memory - (
           1 + momentum) * learning_rate * grad / rms_grad
           
       updates.append((old_square, new_square))
       updates.append((old_avg, new_avg))
       updates.append((memory, update))
       updates.append((param, param + update2))
    return updates 
開發者ID:uoguelph-mlrg,項目名稱:Theano-MPI,代碼行數:44,代碼來源:lsgan.py

示例14: compute_updates

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import or_ [as 別名]
def compute_updates(self, training_cost, params):
        updates = []
         
        grads = T.grad(training_cost, params)
        grads = OrderedDict(zip(params, grads))

        # Gradient clipping
        c = numpy.float32(self.cutoff)
        clip_grads = []
        
        norm_gs = T.sqrt(sum(T.sum(g ** 2) for p, g in grads.items()))
        normalization = T.switch(T.ge(norm_gs, c), c / norm_gs, np.float32(1.))
        notfinite = T.or_(T.isnan(norm_gs), T.isinf(norm_gs))
         
        for p, g in grads.items():
            clip_grads.append((p, T.switch(notfinite, numpy.float32(.1) * p, g * normalization)))
        
        grads = OrderedDict(clip_grads)

        if self.initialize_from_pretrained_word_embeddings and self.fix_pretrained_word_embeddings:
            assert not self.fix_encoder_parameters
            # Keep pretrained word embeddings fixed
            logger.debug("Will use mask to fix pretrained word embeddings")
            grads[self.W_emb] = grads[self.W_emb] * self.W_emb_pretrained_mask
        elif self.fix_encoder_parameters:
            # If 'fix_encoder_parameters' is on, the word embeddings will be excluded from parameter training set
            logger.debug("Will fix word embeddings to initial embeddings or embeddings from resumed model")
        else:
            logger.debug("Will train all word embeddings")

        if self.updater == 'adagrad':
            updates = Adagrad(grads, self.lr)  
        elif self.updater == 'sgd':
            raise Exception("Sgd not implemented!")
        elif self.updater == 'adadelta':
            updates = Adadelta(grads)
        elif self.updater == 'rmsprop':
            updates = RMSProp(grads, self.lr)
        elif self.updater == 'adam':
            updates = Adam(grads, self.lr)
        else:
            raise Exception("Updater not understood!") 

        return updates
  
    # Batch training function. 
開發者ID:julianser,項目名稱:hed-dlg-truncated,代碼行數:48,代碼來源:dialog_encdec.py


注:本文中的theano.tensor.or_方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。