當前位置: 首頁>>代碼示例>>Python>>正文


Python tensor.ones方法代碼示例

本文整理匯總了Python中theano.tensor.ones方法的典型用法代碼示例。如果您正苦於以下問題:Python tensor.ones方法的具體用法?Python tensor.ones怎麽用?Python tensor.ones使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在theano.tensor的用法示例。


在下文中一共展示了tensor.ones方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: path_probabs

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import ones [as 別名]
def path_probabs(cls, y, y_hat, y_mask, y_hat_mask, blank_symbol):
        pred_y = cls.class_batch_to_labeling_batch(y, y_hat, y_hat_mask)

        r2, r3 = cls.recurrence_relation(y, y_mask, blank_symbol)

        def step(p_curr, p_prev):
            # instead of dot product, we * first
            # and then sum oven one dimension.
            # objective: T.dot((p_prev)BxL, LxLxB)
            # solusion: Lx1xB * LxLxB --> LxLxB --> (sumover)xLxB
            dotproduct = (p_prev + tensor.dot(p_prev, r2) +
                          (p_prev.dimshuffle(1, 'x', 0) * r3).sum(axis=0).T)
            return p_curr.T * dotproduct * y_mask.T  # B x L

        probabilities, _ = theano.scan(
            step,
            sequences=[pred_y],
            outputs_info=[tensor.eye(y.shape[0])[0] * tensor.ones(y.T.shape)])
        return probabilities, probabilities.shape 
開發者ID:mohammadpz,項目名稱:CTC-Connectionist-Temporal-Classification,代碼行數:21,代碼來源:ctc_cost.py

示例2: log_path_probabs

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import ones [as 別名]
def log_path_probabs(cls, y, y_hat, y_mask, y_hat_mask, blank_symbol):
        pred_y = cls.class_batch_to_labeling_batch(y, y_hat, y_hat_mask)
        r2, r3 = cls.recurrence_relation(y, y_mask, blank_symbol)

        def step(log_p_curr, log_p_prev):
            p1 = log_p_prev
            p2 = cls.log_dot_matrix(p1, r2)
            p3 = cls.log_dot_tensor(p1, r3)
            p123 = cls.log_add(p3, cls.log_add(p1, p2))

            return (log_p_curr.T +
                    p123 +
                    cls._epslog(y_mask.T))

        log_probabilities, _ = theano.scan(
            step,
            sequences=[cls._epslog(pred_y)],
            outputs_info=[cls._epslog(tensor.eye(y.shape[0])[0] *
                                      tensor.ones(y.T.shape))])
        return log_probabilities 
開發者ID:mohammadpz,項目名稱:CTC-Connectionist-Temporal-Classification,代碼行數:22,代碼來源:ctc_cost.py

示例3: create_probs_computer

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import ones [as 別名]
def create_probs_computer(self, return_alignment=False):
        if not hasattr(self, 'probs_fn'):
            logger.debug("Compile probs computer")
            self.probs_fn = theano.function(
                    inputs=self.inputs,
                    outputs=[self.predictions.word_probs, self.alignment],
                    name="probs_fn")
        def probs_computer(x, y):
            x_mask = numpy.ones(x.shape[0], dtype="float32")
            y_mask = numpy.ones(y.shape[0], dtype="float32")
            probs, alignment = self.probs_fn(x[:, None], y[:, None],
                    x_mask[:, None], y_mask[:, None])
            if return_alignment:
                return probs, alignment
            else:
                return probs
        return probs_computer 
開發者ID:sebastien-j,項目名稱:LV_groundhog,代碼行數:19,代碼來源:encdec.py

示例4: gen_hull

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import ones [as 別名]
def gen_hull(p, p_mask, f_encode, f_probi, options):
    # p: n_sizes * n_samples * data_dim
    n_sizes = p.shape[0]
    n_samples = p.shape[1] if p.ndim == 3 else 1
    hprev = f_encode(p_mask, p)  # n_sizes * n_samples * data_dim
    points = numpy.zeros((n_samples, n_sizes), dtype='int64')
    h = hprev[-1]
    c = numpy.zeros((n_samples, options['dim_proj']), dtype=config.floatX)
    xi = numpy.zeros((n_samples,), dtype='int64')
    xi_mask = numpy.ones((n_samples,), dtype=config.floatX)
    for i in range(n_sizes):
        h, c, probi = f_probi(p_mask[i], xi, h, c, hprev, p_mask, p)
        xi = probi.argmax(axis=0)
        xi *= xi_mask.astype(numpy.int64)  # Avoid compatibility problem in numpy 1.10
        xi_mask = (numpy.not_equal(xi, 0)).astype(config.floatX)
        if numpy.equal(xi_mask, 0).all():
            break
        points[:, i] = xi
    return points 
開發者ID:keon,項目名稱:deeptravel,代碼行數:21,代碼來源:ptrnets.py

示例5: Noise

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import ones [as 別名]
def Noise(hyp, X1, X2=None, all_pairs=True):
    ''' Noise kernel. Takes as an input a distance matrix D
    and creates a new matrix as Kij = sn2 if Dij == 0 else 0'''
    if X2 is None:
        X2 = X1

    sn2 = hyp**2
    if all_pairs and X1 is X2:
        # D = (X1[:,None,:] - X2[None,:,:]).sum(2)
        K = tt.eye(X1.shape[0])*sn2
        return K
    else:
        # D = (X1 - X2).sum(1)
        if X1 is X2:
            K = tt.ones((X1.shape[0],))*sn2
        else:
            K = 0
        return K

    # K = tt.eq(D,0)*sn2
    # return K 
開發者ID:mcgillmrl,項目名稱:kusanagi,代碼行數:23,代碼來源:cov.py

示例6: pad

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import ones [as 別名]
def pad(x, padding, fill_value=0):
    """
    applies padding to tensor
    """
    input_shape = x.shape
    output_shape = []
    indices = []

    for dim, pad in enumerate(padding):
        try:
            left_pad, right_pad = pad
        except TypeError:
            left_pad = right_pad = pad
        output_shape.append(left_pad + input_shape[dim] + right_pad)
        indices.append(slice(left_pad, left_pad + input_shape[dim]))

    if fill_value:
        out = T.ones(output_shape) * fill_value
    else:
        out = T.zeros(output_shape)
    return T.set_subtensor(out[tuple(indices)], x) 
開發者ID:SBU-BMI,項目名稱:u24_lymphocyte,代碼行數:23,代碼來源:padding.py

示例7: get_output_for

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import ones [as 別名]
def get_output_for(self, inputs, **kwargs):
        vals, ref = inputs

        def filt(V, R):
            if self.norm_type is not None:
                o = tt.ones((1, V.shape[1], V.shape[2]), np.float32)
                norm = gaussian_filter(R, o, self.kern_std, self.ref_dim)
                norm = tt.sqrt(norm) if self.norm_type == "sym" else norm
                norm += 1e-8

            V = V / norm if self.norm_type in ["pre", "sym"] else V
            F = gaussian_filter(R, V, self.kern_std)
            return F / norm if self.norm_type in ["post", "sym"] else F

        filtered = theano.scan(fn=filt, sequences=[vals, ref],
                               outputs_info=None)[0]
        return filtered 
開發者ID:HapeMask,項目名稱:crfrnn_layer,代碼行數:19,代碼來源:layers.py

示例8: _meshgrid

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import ones [as 別名]
def _meshgrid(height, width):
    # This should be equivalent to:
    #  x_t, y_t = np.meshgrid(np.linspace(-1, 1, width),
    #                         np.linspace(-1, 1, height))
    #  ones = np.ones(np.prod(x_t.shape))
    #  grid = np.vstack([x_t.flatten(), y_t.flatten(), ones])
    x_t = T.dot(T.ones((height, 1)),
                _linspace(-1.0, 1.0, width).dimshuffle('x', 0))
    y_t = T.dot(_linspace(-1.0, 1.0, height).dimshuffle(0, 'x'),
                T.ones((1, width)))

    x_t_flat = x_t.reshape((1, -1))
    y_t_flat = y_t.reshape((1, -1))
    ones = T.ones_like(x_t_flat)
    grid = T.concatenate([x_t_flat, y_t_flat, ones], axis=0)
    return grid 
開發者ID:skaae,項目名稱:transformer_network,代碼行數:18,代碼來源:transformerlayer.py

示例9: project3Dto2D

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import ones [as 別名]
def project3Dto2D(self, Li, idxs):
        """
        Project 3D point to 2D
        :param Li: joints in normalized 3D
        :param idxs: frames specified by subset
        :return: 2D points, in normalized 2D coordinates
        """

        if not isinstance(idxs, numpy.ndarray):
            idxs = numpy.asarray([idxs])

        # 3D -> 2D projection also shift by M to cropped window
        Li_glob3D = (numpy.reshape(Li, (len(idxs), self.numJoints, 3))*self.Di_scale[idxs][:, None, None]+self.Di_off3D[idxs][:, None, :]).reshape((len(idxs)*self.numJoints, 3))
        Li_glob3D_hom = numpy.concatenate([Li_glob3D, numpy.ones((len(idxs)*self.numJoints, 1), dtype='float32')], axis=1)
        Li_glob2D_hom = numpy.dot(Li_glob3D_hom, self.cam_proj.T)
        Li_glob2D = (Li_glob2D_hom[:, 0:3] / Li_glob2D_hom[:, 3][:, None]).reshape((len(idxs), self.numJoints, 3))
        Li_img2D_hom = numpy.einsum('ijk,ikl->ijl', Li_glob2D, self.Di_trans2D[idxs])
        Li_img2D = (Li_img2D_hom[:, :, 0:2] / Li_img2D_hom[:, :, 2][:, :, None]).reshape((len(idxs), self.numJoints*2))
        Li_img2Dcrop = (Li_img2D - (self.Di.shape[3]/2.)) / (self.Di.shape[3]/2.)
        return Li_img2Dcrop 
開發者ID:moberweger,項目名稱:semi-auto-anno,代碼行數:22,代碼來源:semiautoanno.py

示例10: _log_path_probs

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import ones [as 別名]
def _log_path_probs(y, y_mask, y_hat, y_hat_mask):
    pred_y = _class_batch_to_labeling_batch(y, y_hat, y_hat_mask)
    r2, r3 = _recurrence_relation(y, y_mask)

    def step(log_p_curr, log_p_prev):
        p1 = log_p_prev
        p2 = _log_dot_matrix(p1, r2)
        p3 = _log_dot_tensor(p1, r3)
        p123 = _log_add(p3, _log_add(p1, p2))

        return (log_p_curr.T +
                p123 +
                _epslog(y_mask.T))

    log_probabilities, _ = theano.scan(
        step,
        sequences=[_epslog(pred_y)],
        outputs_info=[_epslog(tensor.eye(y.shape[0])[0] *
                              tensor.ones(y.T.shape))])
    return log_probabilities 
開發者ID:dagbldr,項目名稱:dagbldr,代碼行數:22,代碼來源:penalties.py

示例11: _ctc_label_seq

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import ones [as 別名]
def _ctc_label_seq(y, y_mask):
    blank_symbol = -1
    # for y
    y_extended = y.T.dimshuffle(0, 1, 'x')
    blanks = tensor.zeros_like(y_extended) + blank_symbol
    concat = tensor.concatenate([y_extended, blanks], axis=2)
    res = concat.reshape((concat.shape[0],
                          concat.shape[1] * concat.shape[2])).T
    beginning_blanks = tensor.zeros((1, res.shape[1])) + blank_symbol
    blanked_y = tensor.concatenate([beginning_blanks, res], axis=0)

    y_mask_extended = y_mask.T.dimshuffle(0, 1, 'x')
    concat = tensor.concatenate([y_mask_extended,
                                 y_mask_extended], axis=2)
    res = concat.reshape((concat.shape[0],
                          concat.shape[1] * concat.shape[2])).T
    beginning_blanks = tensor.ones((1, res.shape[1]),
                                   dtype=theano.config.floatX)
    blanked_y_mask = tensor.concatenate([beginning_blanks, res], axis=0)
    return blanked_y, blanked_y_mask 
開發者ID:dagbldr,項目名稱:dagbldr,代碼行數:22,代碼來源:penalties.py

示例12: log_path_probs

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import ones [as 別名]
def log_path_probs(y, y_mask, y_hat, y_hat_mask):
    pred_y = class_batch_to_labeling_batch(y, y_hat, y_hat_mask)
    r2, r3 = recurrence_relation(y, y_mask)

    def step(log_p_curr, log_p_prev):
        p1 = log_p_prev
        p2 = _log_dot_matrix(p1, r2)
        p3 = _log_dot_tensor(p1, r3)
        p123 = _log_add(p3, _log_add(p1, p2))

        return (log_p_curr.T +
                p123 +
                _epslog(y_mask.T))

    log_probabilities, _ = theano.scan(
        step,
        sequences=[_epslog(pred_y)],
        outputs_info=[_epslog(tensor.eye(y.shape[0])[0] *
                              tensor.ones(y.T.shape))])
    return log_probabilities 
開發者ID:rakeshvar,項目名稱:chamanti_ocr,代碼行數:22,代碼來源:minibatch_ocr.py

示例13: theano_label_seq

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import ones [as 別名]
def theano_label_seq(y, y_mask):
    blank_symbol = -1
    # for y
    y_extended = y.T.dimshuffle(0, 1, 'x')
    blanks = tensor.zeros_like(y_extended) + blank_symbol
    concat = tensor.concatenate([y_extended, blanks], axis=2)
    res = concat.reshape((concat.shape[0],
                          concat.shape[1] * concat.shape[2])).T
    beginning_blanks = tensor.zeros((1, res.shape[1])) + blank_symbol
    blanked_y = tensor.concatenate([beginning_blanks, res], axis=0)

    y_mask_extended = y_mask.T.dimshuffle(0, 1, 'x')
    concat = tensor.concatenate([y_mask_extended,
                                 y_mask_extended], axis=2)
    res = concat.reshape((concat.shape[0],
                          concat.shape[1] * concat.shape[2])).T
    beginning_blanks = tensor.ones((1, res.shape[1]),
                                   dtype=theano.config.floatX)
    blanked_y_mask = tensor.concatenate([beginning_blanks, res], axis=0)
    return blanked_y, blanked_y_mask 
開發者ID:rakeshvar,項目名稱:chamanti_ocr,代碼行數:22,代碼來源:minibatch_ocr.py

示例14: create_full_unique

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import ones [as 別名]
def create_full_unique(cls, batch_size, num_node_ids, node_state_size, num_edge_types):
        """
        Create a 'full unique' graph state (i.e. a graph state where every id has exactly one node) from a spec

            batch_size: Number of batches
            num_node_ids: An integer giving size of node id
            node_state_size: An integer giving size of node state
            num_edge_types: An integer giving number of edge types
        """
        return cls( T.ones([batch_size, num_node_ids]),
                    T.tile(T.shape_padleft(T.eye(num_node_ids)), (batch_size,1,1)),
                    T.zeros([batch_size, num_node_ids, node_state_size]),
                    T.zeros([batch_size, num_node_ids, num_node_ids, num_edge_types])) 
開發者ID:hexahedria,項目名稱:gated-graph-transformer-network,代碼行數:15,代碼來源:graph_state.py

示例15: _transform_trans

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import ones [as 別名]
def _transform_trans(theta,input):
    batch1, step1, dim1 = input.shape
    input = K.reshape(input,(batch1,step1,dim1//3,3))
    input = K.reshape(input,(batch1*step1,dim1//3,3))
    input = K.permute_dimensions(input,[0,2,1])
    add = T.ones((batch1*step1,1,dim1//3))
    input= K.concatenate([input,add],axis=1)

    output = K.batch_dot(theta,input)
    output = K.permute_dimensions(output,[0,2,1])
    output = K.reshape(output,(output.shape[0],dim1))
    output = K.reshape(output,(batch1,step1,output.shape[1]))

    return output 
開發者ID:microsoft,項目名稱:View-Adaptive-Neural-Networks-for-Skeleton-based-Human-Action-Recognition,代碼行數:16,代碼來源:transform_rnn.py


注:本文中的theano.tensor.ones方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。