當前位置: 首頁>>代碼示例>>Python>>正文


Python nnet.sigmoid方法代碼示例

本文整理匯總了Python中theano.tensor.nnet.sigmoid方法的典型用法代碼示例。如果您正苦於以下問題:Python nnet.sigmoid方法的具體用法?Python nnet.sigmoid怎麽用?Python nnet.sigmoid使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在theano.tensor.nnet的用法示例。


在下文中一共展示了nnet.sigmoid方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from theano.tensor import nnet [as 別名]
# 或者: from theano.tensor.nnet import sigmoid [as 別名]
def __init__(self, n_in, n_out, activation_fn=sigmoid, p_dropout=0.0):
        self.n_in = n_in
        self.n_out = n_out
        self.activation_fn = activation_fn
        self.p_dropout = p_dropout
        # Initialize weights and biases
        self.w = theano.shared(
            np.asarray(
                np.random.normal(
                    loc=0.0, scale=np.sqrt(1.0/n_out), size=(n_in, n_out)),
                dtype=theano.config.floatX),
            name='w', borrow=True)
        self.b = theano.shared(
            np.asarray(np.random.normal(loc=0.0, scale=1.0, size=(n_out,)),
                       dtype=theano.config.floatX),
            name='b', borrow=True)
        self.params = [self.w, self.b] 
開發者ID:dalmia,項目名稱:WannaPark,代碼行數:19,代碼來源:network3.py

示例2: mean_h_given_v

# 需要導入模塊: from theano.tensor import nnet [as 別名]
# 或者: from theano.tensor.nnet import sigmoid [as 別名]
def mean_h_given_v(self, v):
        """
        Compute the mean activation of the hidden units given visible unit
        configurations for a set of training examples.

        Parameters
        ----------
        v : tensor_like or list of tensor_likes
            Theano symbolic (or list thereof) representing the hidden unit
            states for a batch (or several) of training examples, with the
            first dimension indexing training examples and the second
            indexing data dimensions.

        Returns
        -------
        h : tensor_like or list of tensor_likes
            Theano symbolic (or list thereof) representing the mean
            (deterministic) hidden unit activations given the visible units.
        """
        if isinstance(v, tensor.Variable):
            return nnet.sigmoid(self.input_to_h_from_v(v))
        else:
            return [self.mean_h_given_v(vis) for vis in v] 
開發者ID:zchengquan,項目名稱:TextDetector,代碼行數:25,代碼來源:rbm.py

示例3: mean_v_given_h

# 需要導入模塊: from theano.tensor import nnet [as 別名]
# 或者: from theano.tensor.nnet import sigmoid [as 別名]
def mean_v_given_h(self, h):
        """
        Compute the mean activation of the visibles given hidden unit
        configurations for a set of training examples.

        Parameters
        ----------
        h : tensor_like or list of tensor_likes
            Theano symbolic (or list thereof) representing the hidden unit
            states for a batch (or several) of training examples, with the
            first dimension indexing training examples and the second
            indexing hidden units.

        Returns
        -------
        vprime : tensor_like or list of tensor_likes
            Theano symbolic (or list thereof) representing the mean
            (deterministic) reconstruction of the visible units given the
            hidden units.
        """
        if isinstance(h, tensor.Variable):
            return nnet.sigmoid(self.input_to_v_from_h(h))
        else:
            return [self.mean_v_given_h(hid) for hid in h] 
開發者ID:zchengquan,項目名稱:TextDetector,代碼行數:26,代碼來源:rbm.py

示例4: input_to_h_from_v

# 需要導入模塊: from theano.tensor import nnet [as 別名]
# 或者: from theano.tensor.nnet import sigmoid [as 別名]
def input_to_h_from_v(self, v):
        """
        .. todo::

            WRITEME
        """
        D = self.Lambda
        alpha = self.alpha

        def sum_s(x):
            return x.reshape((
                -1,
                self.nhid,
                self.n_s_per_h)).sum(axis=2)

        return tensor.add(
                self.b,
                -0.5 * tensor.dot(v * v, D),
                sum_s(self.mu * tensor.dot(v, self.W)),
                sum_s(0.5 * tensor.sqr(tensor.dot(v, self.W)) / alpha))

    #def mean_h_given_v(self, v):
    #    inherited version is OK:
    #    return nnet.sigmoid(self.input_to_h_from_v(v)) 
開發者ID:zchengquan,項目名稱:TextDetector,代碼行數:26,代碼來源:rbm.py

示例5: compute_sub_all_scores

# 需要導入模塊: from theano.tensor import nnet [as 別名]
# 或者: from theano.tensor.nnet import sigmoid [as 別名]
def compute_sub_all_scores(self, start_end):
        plu = softmax(T.dot(self.trained_users[start_end], self.trained_items.T))[:, :-1]  # (n_batch, n_item)
        length = T.max(T.sum(self.tes_masks[start_end], axis=1))  # 253
        cidx = T.arange(length).reshape((1, length)) + self.tra_accum_lens[start_end][:, 0].reshape((len(start_end), 1))
        cl = T.sum(self.trained_items[self.tra_context_masks[cidx]], axis=2)  # n_batch x seq_length x n_size
        cl = cl.dimshuffle(1, 2, 0)
        pb = self.trained_branch[self.routes]  # (n_item x 4 x tree_depth x n_size)
        shp0, shp1, shp2 = self.lrs.shape
        lrs = self.lrs.reshape((shp0, shp1, shp2, 1, 1))
        pr_bc = T.dot(pb, cl)
        br = sigmoid(pr_bc * lrs) * T.ceil(abs(pr_bc))  # (n_item x 4 x tree_depth x seq_length x n_batch)
        path = T.prod(br, axis=2) * self.probs.reshape((shp0, shp1, 1, 1))
        del cl, pb, br, lrs
        # paths = T.prod((T.floor(1 - path) + path), axis=1)  # (n_item x seq_length x n_batch)
        paths = T.sum(path, axis=1)
        paths = T.floor(1 - paths) + paths
        p = paths[:-1].T * plu.reshape((plu.shape[0], 1, plu.shape[1]))  # (n_batch x n_item)
        # p = plu.reshape((plu.shape[0], 1, plu.shape[1])) * T.ones((plu.shape[0], length, plu.shape[1]))
        return T.reshape(p, (p.shape[0] * p.shape[1], p.shape[2])).eval() 
開發者ID:tangrizzly,項目名稱:Point-of-Interest-Recommendation,代碼行數:21,代碼來源:POI2Vec.py

示例6: set_output

# 需要導入模塊: from theano.tensor import nnet [as 別名]
# 或者: from theano.tensor.nnet import sigmoid [as 別名]
def set_output(self):
        self._output = sigmoid(self._prev_layer.output) 
開發者ID:chrischoy,項目名稱:3D-R2N2,代碼行數:4,代碼來源:layers.py

示例7: build_prediction

# 需要導入模塊: from theano.tensor import nnet [as 別名]
# 或者: from theano.tensor.nnet import sigmoid [as 別名]
def build_prediction(self):
        # return NN.softmax(self.activation) #use this line to expose a slow subtensor
        # implementation
        return NN.sigmoid(self.activation) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:6,代碼來源:regression.py

示例8: __init__

# 需要導入模塊: from theano.tensor import nnet [as 別名]
# 或者: from theano.tensor.nnet import sigmoid [as 別名]
def __init__(self,
                 input=tensor.dvector('input'),
                 target=tensor.dvector('target'),
                 n_input=1, n_hidden=1, n_output=1, lr=1e-3, **kw):
        super(NNet, self).__init__(**kw)

        self.input = input
        self.target = target
        self.lr = shared(lr, 'learning_rate')
        self.w1 = shared(numpy.zeros((n_hidden, n_input)), 'w1')
        self.w2 = shared(numpy.zeros((n_output, n_hidden)), 'w2')
        # print self.lr.type

        self.hidden = sigmoid(tensor.dot(self.w1, self.input))
        self.output = tensor.dot(self.w2, self.hidden)
        self.cost = tensor.sum((self.output - self.target)**2)

        self.sgd_updates = {
            self.w1: self.w1 - self.lr * tensor.grad(self.cost, self.w1),
            self.w2: self.w2 - self.lr * tensor.grad(self.cost, self.w2)}

        self.sgd_step = pfunc(
            params=[self.input, self.target],
            outputs=[self.output, self.cost],
            updates=self.sgd_updates)

        self.compute_output = pfunc([self.input], self.output)

        self.output_from_hidden = pfunc([self.hidden], self.output) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:31,代碼來源:test_misc.py

示例9: __init__

# 需要導入模塊: from theano.tensor import nnet [as 別名]
# 或者: from theano.tensor.nnet import sigmoid [as 別名]
def __init__(self,
            input=tensor.dvector('input'),
            target=tensor.dvector('target'),
            n_input=1, n_hidden=1, n_output=1, lr=1e-3, **kw):
        super(NNet, self).__init__(**kw)

        self.input = input
        self.target = target
        self.lr = shared(lr, 'learning_rate')
        self.w1 = shared(numpy.zeros((n_hidden, n_input)), 'w1')
        self.w2 = shared(numpy.zeros((n_output, n_hidden)), 'w2')
        # print self.lr.type

        self.hidden = sigmoid(tensor.dot(self.w1, self.input))
        self.output = tensor.dot(self.w2, self.hidden)
        self.cost = tensor.sum((self.output - self.target)**2)

        self.sgd_updates = {
                    self.w1: self.w1 - self.lr * tensor.grad(self.cost, self.w1),
                    self.w2: self.w2 - self.lr * tensor.grad(self.cost, self.w2)}

        self.sgd_step = pfunc(
                params=[self.input, self.target],
                outputs=[self.output, self.cost],
                updates=self.sgd_updates)

        self.compute_output = pfunc([self.input],  self.output)

        self.output_from_hidden = pfunc([self.hidden], self.output) 
開發者ID:rizar,項目名稱:attention-lvcsr,代碼行數:31,代碼來源:test_misc.py

示例10: exe_time

# 需要導入模塊: from theano.tensor import nnet [as 別名]
# 或者: from theano.tensor.nnet import sigmoid [as 別名]
def exe_time(func):
    def new_func(*args, **args2):
        t0 = time.time()
        print("-- @%s, {%s} start" % (time.strftime("%X", time.localtime()), func.__name__))
        back = func(*args, **args2)
        print("-- @%s, {%s} end" % (time.strftime("%X", time.localtime()), func.__name__))
        print("-- @%.3fs taken for {%s}" % (time.time() - t0, func.__name__))
        return back
    return new_func


# 輸出時:h*x → sigmoid(T.sum(h*(xp-xq), axis=1))
# 預測時:h*x → np.dot(h, x.T)
# ====================================================================================================================== 
開發者ID:tangrizzly,項目名稱:Point-of-Interest-Recommendation,代碼行數:16,代碼來源:GRU.py

示例11: predict

# 需要導入模塊: from theano.tensor import nnet [as 別名]
# 或者: from theano.tensor.nnet import sigmoid [as 別名]
def predict(self, idxs):
        return self.seq_predict(idxs)


# 輸出時:h*x → sigmoid(T.sum([hx, hm]*([xp, mp] - [xq, mq])))
# 預測是:h*x → np.dot([hx, hm], [x, m].T)
# ====================================================================================================================== 
開發者ID:tangrizzly,項目名稱:Point-of-Interest-Recommendation,代碼行數:9,代碼來源:GRU.py

示例12: exe_time

# 需要導入模塊: from theano.tensor import nnet [as 別名]
# 或者: from theano.tensor.nnet import sigmoid [as 別名]
def exe_time(func):
    def new_func(*args, **args2):
        t0 = time.time()
        print("-- @%s, {%s} start" % (time.strftime("%X", time.localtime()), func.__name__))
        back = func(*args, **args2)
        print("-- @%s, {%s} end" % (time.strftime("%X", time.localtime()), func.__name__))
        print("-- @%.3fs taken for {%s}" % (time.time() - t0, func.__name__))
        return back

    return new_func


# 輸出時:h*x → sigmoid(T.sum(h*(xp-xq), axis=1))
# 預測時:h*x → np.dot(h, x.T)
# ====================================================================================================================== 
開發者ID:tangrizzly,項目名稱:Point-of-Interest-Recommendation,代碼行數:17,代碼來源:PRPRM.py

示例13: __theano_train__

# 需要導入模塊: from theano.tensor import nnet [as 別名]
# 或者: from theano.tensor.nnet import sigmoid [as 別名]
def __theano_train__(self, ):
        """
        訓練階段跑一遍訓練序列
        """
        # self.alpha_lambda = ['alpha', 'lambda']
        uidx, pqidx = T.iscalar(), T.ivector()
        usr = self.ux[uidx]     # shape=(n_in, )
        xpq = self.lt[pqidx]

        """
        輸入t時刻正負樣本,計算當前損失並更新user/正負樣本. 公式裏省略了時刻t
        # 根據性質:T.dot((n, ), (n, ))得到(1, 1)
            uij  = user * (xp - xq)
            upq = log(sigmoid(uij))
        """
        uij = T.dot(usr, xpq[0] - xpq[1])
        upq = T.log(sigmoid(uij))

        # ----------------------------------------------------------------------------
        # cost, gradients, learning rate, L2 regularization
        lr, l2 = self.alpha_lambda[0], self.alpha_lambda[1]
        bpr_l2_sqr = (
            T.sum([T.sum(par ** 2) for par in [usr, xpq]]))
        costs = (
            - upq +
            0.5 * l2 * bpr_l2_sqr)
        # 1個user,2個items,這種更新求導是最快的。
        pars_subs = [(self.ux, usr), (self.lt, xpq)]
        seq_updates = [(par, T.set_subtensor(sub, sub - lr * T.grad(costs, sub)))
                       for par, sub in pars_subs]
        # ----------------------------------------------------------------------------

        # 輸入用戶、正負樣本及其它參數後,更新變量,返回損失。
        self.bpr_train = theano.function(
            inputs=[uidx, pqidx],
            outputs=-upq,
            updates=seq_updates) 
開發者ID:tangrizzly,項目名稱:Point-of-Interest-Recommendation,代碼行數:39,代碼來源:BPR.py

示例14: rbm_ais_gibbs_for_v

# 需要導入模塊: from theano.tensor import nnet [as 別名]
# 或者: from theano.tensor.nnet import sigmoid [as 別名]
def rbm_ais_gibbs_for_v(rbmA_params, rbmB_params, beta, v_sample, seed=23098):
    """
    .. todo::

        WRITEME

    Parameters
    ----------
    rbmA_params : list
        Parameters of the baserate model (usually infinite temperature).
        List should be of length 3 and contain numpy.ndarrays
        corresponding to model parameters (weights, visbias, hidbias).

    rbmB_params : list
        Similar to `rbmA_params`, but for model at temperature 1.

    beta : theano.shared
        Scalar, represents inverse temperature at which we wish to sample from.

    v_sample : theano.shared
        Matrix of shape (n_runs, nvis), state of current particles.

    seed : int, optional
        Optional seed parameter for sampling from binomial units.
    """

    (weights_a, visbias_a, hidbias_a) = rbmA_params
    (weights_b, visbias_b, hidbias_b) = rbmB_params

    theano_rng = make_theano_rng(seed, which_method='binomial')

    # equation 15 (Salakhutdinov & Murray 2008)
    ph_a = nnet.sigmoid((1 - beta) * (tensor.dot(v_sample, weights_a) +
                        hidbias_a))
    ha_sample = theano_rng.binomial(size=(v_sample.shape[0], len(hidbias_a)),
                                    n=1, p=ph_a, dtype=config.floatX)

    # equation 16 (Salakhutdinov & Murray 2008)
    ph_b = nnet.sigmoid(beta * (tensor.dot(v_sample, weights_b) + hidbias_b))
    hb_sample = theano_rng.binomial(size=(v_sample.shape[0], len(hidbias_b)),
                                    n=1, p=ph_b, dtype=config.floatX)

    # equation 17 (Salakhutdinov & Murray 2008)
    pv_act = (1 - beta) * (tensor.dot(ha_sample, weights_a.T) + visbias_a) + \
             beta * (tensor.dot(hb_sample, weights_b.T) + visbias_b)
    pv = nnet.sigmoid(pv_act)
    new_v_sample = theano_rng.binomial(
        size=(v_sample.shape[0], len(visbias_b)),
        n=1, p=pv, dtype=config.floatX
    )

    return new_v_sample 
開發者ID:zchengquan,項目名稱:TextDetector,代碼行數:54,代碼來源:rbm_tools.py

示例15: __theano_predict__

# 需要導入模塊: from theano.tensor import nnet [as 別名]
# 或者: from theano.tensor.nnet import sigmoid [as 別名]
def __theano_predict__(self, n_in, n_hidden):
        """
        測試階段再跑一遍訓練序列得到各個隱層。用全部數據一次性得出所有用戶的表達
        """
        ui, wh = self.ui, self.wh

        tra_mask = T.imatrix()
        actual_batch_size = tra_mask.shape[0]
        seq_length = T.max(T.sum(tra_mask, axis=1))     # 獲取mini-batch裏各序列的長度最大值作為seq_length

        h0 = T.alloc(self.h0, actual_batch_size, n_hidden)      # shape=(n, 20)
        bi = T.alloc(self.bi, actual_batch_size, 3, n_hidden)   # shape=(n, 3, 20), 原維度放在後邊
        bi = bi.dimshuffle(1, 2, 0)                             # shape=(3, 20, n)

        # 隱層是1個GRU Unit:都可以用這個統一的格式。
        pidxs = T.imatrix()
        ps = self.trained_items[pidxs]      # shape((actual_batch_size, seq_length, n_hidden))
        ps = ps.dimshuffle(1, 0, 2)         # shape=(seq_length, batch_size, n_hidden)=(157, n, 20)

        def recurrence(p_t, h_t_pre1):
            # 特征、隱層都處理成shape=(batch_size, n_hidden)=(n, 20)
            z_r = sigmoid(T.dot(ui[:2], p_t.T) +
                          T.dot(wh[:2], h_t_pre1.T) + bi[:2])
            z, r = z_r[0].T, z_r[1].T                           # shape=(n, 20)
            c = tanh(T.dot(ui[2], p_t.T) +
                     T.dot(wh[2], (r * h_t_pre1).T) + bi[2])    # shape=(20, n)
            h_t = (T.ones_like(z) - z) * h_t_pre1 + z * c.T     # shape=(n, 20)
            return h_t
        h, _ = theano.scan(         # h.shape=(157, n, 20)
            fn=recurrence,
            sequences=ps,
            outputs_info=h0,
            n_steps=seq_length)

        # 得到batch_hts.shape=(n, 20),就是這個batch裏每個用戶的表達ht。
        # 必須要用T.sum(),不然無法建模到theano的graph裏、報length not known的錯
        hs = h.dimshuffle(1, 0, 2)                      # shape=(batch_size, seq_length, n_hidden)
        hts = hs[                                       # shape=(n, n_hidden)
            T.arange(actual_batch_size),                # 行. 花式索引a[[1,2,3],[2,5,6]],需給定行列的表示
            T.sum(tra_mask, axis=1) - 1]                # 列。需要mask是'int32'型的

        # givens給數據
        start_end = T.ivector()
        self.seq_predict = theano.function(
            inputs=[start_end],
            outputs=hts,
            givens={
                pidxs: self.tra_buys_masks[start_end],       # 類型是 TensorType(int32, matrix)
                tra_mask: self.tra_masks[start_end]}) 
開發者ID:tangrizzly,項目名稱:Point-of-Interest-Recommendation,代碼行數:51,代碼來源:GRU.py


注:本文中的theano.tensor.nnet.sigmoid方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。