當前位置: 首頁>>代碼示例>>Python>>正文


Python nnet.conv2d方法代碼示例

本文整理匯總了Python中theano.tensor.nnet.conv2d方法的典型用法代碼示例。如果您正苦於以下問題:Python nnet.conv2d方法的具體用法?Python nnet.conv2d怎麽用?Python nnet.conv2d使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在theano.tensor.nnet的用法示例。


在下文中一共展示了nnet.conv2d方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: local_mean_subtraction

# 需要導入模塊: from theano.tensor import nnet [as 別名]
# 或者: from theano.tensor.nnet import conv2d [as 別名]
def local_mean_subtraction(input, kernel_size=5):

    input_shape = (input.shape[0], 1, input.shape[1], input.shape[2])
    input = input.reshape(input_shape).astype(floatX)

    X = T.tensor4(dtype=floatX)
    filter_shape = (1, 1, kernel_size, kernel_size)
    filters = mean_filter(kernel_size).reshape(filter_shape)
    filters = shared(_asarray(filters, dtype=floatX), borrow=True)

    mean = conv2d(input=X,
                  filters=filters,
                  input_shape=input.shape,
                  filter_shape=filter_shape,
                  border_mode='half')
    new_X = X - mean
    f = function([X], new_X)
    return f(input) 
開發者ID:fvisin,項目名稱:reseg,代碼行數:20,代碼來源:helper_dataset.py

示例2: get_output

# 需要導入模塊: from theano.tensor import nnet [as 別名]
# 或者: from theano.tensor.nnet import conv2d [as 別名]
def get_output(self, input, **kwargs):
        var_shape = kwargs.get('var_shape', False)
        if var_shape:
            input_shape = None
        else:
            input_shape = self.input_shape
        lin_output = conv2d(
            input=input,
            filters=self.W,
            filter_shape=self.filter_shape,
            border_mode=self.mode,
            subsample=self.subsample,
            input_shape=input_shape
        )

        if self.batch_norm:
            lin_output = self.bn_layer.get_output(lin_output)
        elif not self.no_bias:
            lin_output += self.b.dimshuffle('x', 0, 'x', 'x')

        return self.activation(lin_output) 
開發者ID:jongyookim,項目名稱:IQA_BIECON_release,代碼行數:23,代碼來源:layers.py

示例3: predict

# 需要導入模塊: from theano.tensor import nnet [as 別名]
# 或者: from theano.tensor.nnet import conv2d [as 別名]
def predict(self, new_data, batch_size):
        """
        predict for new data
        """
        img_shape = (batch_size, 1, self.image_shape[2], self.image_shape[3])
        conv_out = conv.conv2d(input=new_data, filters=self.W, filter_shape=self.filter_shape, image_shape=img_shape)
        if self.non_linear=="tanh":
            conv_out_tanh = Tanh(conv_out + self.b.dimshuffle('x', 0, 'x', 'x'))
            output = myMaxPool(conv_out_tanh, ps=self.poolsize, method=self.max_pool_method)
        if self.non_linear=="relu":
            conv_out_tanh = ReLU(conv_out + self.b.dimshuffle('x', 0, 'x', 'x'))
            output = myMaxPool(conv_out_tanh, ps=self.poolsize, method=self.max_pool_method)
        else:
            pooled_out = myMaxPool(conv_out, ps=self.poolsize, method=self.max_pool_method)
            output = pooled_out + self.b.dimshuffle('x', 0, 'x', 'x')
        return output

# ======================================================================================== 
開發者ID:rakshithShetty,項目名稱:captionGAN,代碼行數:20,代碼來源:cnn_evaluatorTheano.py

示例4: __init__

# 需要導入模塊: from theano.tensor import nnet [as 別名]
# 或者: from theano.tensor.nnet import conv2d [as 別名]
def __init__(self, input, output_maps, input_maps, filter_height, filter_width, poolsize=(2,2)):
        self.input = input
        self.bound = np.sqrt(6./(input_maps*filter_height*filter_width + output_maps*filter_height*filter_width//np.prod(poolsize)))
        self.w = theano.shared(np.asarray(np.random.uniform(low=-self.bound,high=self.bound,size=(output_maps, input_maps, filter_height, filter_width)),dtype=input.dtype))
        self.b = theano.shared(np.asarray(np.random.uniform(low=-.5, high=.5, size=(output_maps)),dtype=input.dtype))
        self.conv_out = conv2d(input=self.input, filters=self.w)
        self.pooled_out = downsample.max_pool_2d(self.conv_out, ds=poolsize, ignore_border=True)
        self.output = T.tanh(self.pooled_out + self.b.dimshuffle('x', 0, 'x', 'x')) 
開發者ID:iamshang1,項目名稱:Projects,代碼行數:10,代碼來源:convolutional_nn.py

示例5: __init__

# 需要導入模塊: from theano.tensor import nnet [as 別名]
# 或者: from theano.tensor.nnet import conv2d [as 別名]
def __init__(self, input, output_maps, input_maps, filter_height, filter_width, maxpool=None):
        self.input = input
        self.w = theano.shared(self.ortho_weights(output_maps,input_maps,filter_height,filter_width),borrow=True)
        self.b = theano.shared(np.zeros((output_maps,), dtype=theano.config.floatX),borrow=True)
        self.conv_out = conv2d(input=self.input, filters=self.w, border_mode='half')
        if maxpool:
            self.conv_out = downsample.max_pool_2d(self.conv_out, ds=maxpool, ignore_border=True)
        self.output = T.nnet.elu(self.conv_out + self.b.dimshuffle('x', 0, 'x', 'x')) 
開發者ID:iamshang1,項目名稱:Projects,代碼行數:10,代碼來源:convnet.py

示例6: conv_encoder

# 需要導入模塊: from theano.tensor import nnet [as 別名]
# 或者: from theano.tensor.nnet import conv2d [as 別名]
def conv_encoder(tparams, state_below, options, prefix='conv_enc',
          one_step=False, init_state=None, width=None, nkernels=None, pool_window=None, pool_stride=None, **kwargs):
    # state_below : maxlen X n_samples X dim_word_src
    # mask : maxlen X n_samples
    # data = (n_samples, dim, maxlen, 1)
    # kernel = (nkernels, dim, width, 1)

    maxlen = state_below.shape[0]
    n_samples = state_below.shape[1]
    dim = state_below.shape[2]

    data = state_below.dimshuffle(1,2,0,'x')
    # data : n_samples X dim X maxlen X 1

    W = tparams[_p(prefix, 'convW')]
    b = tparams[_p(prefix, 'convB')]

    #conv_out = dnn_conv(data, W, border_mode='valid', subsample=(stride,1), precision='float32')
    output = dnn_conv(data, W, border_mode='half', precision='float32')
    #conv_out = conv2d(data, W, border_mode='valid')
    #conv_out = conv2d(data, W, input_shape=(8, 256, 450, 1), filter_shape=(64, 1, 4, 1), border_mode='valid')

    if curr_width % 2 == 0:
        output = output[:,:,:-1,:]

    output = tensor.nnet.relu(output + b.dimshuffle('x',0,'x','x'))

    output = dnn_pool(output, (pool_window, 1), stride=(pool_stride, 1), mode='max', pad=(0, 0))

    #output = tensor.nnet.sigmoid(conv_out)
    # output : n_samples X nkernels X (maxlen-width+1) X 1

    #output = output.dimshuffle(2,0,1,3).squeeze()
    output = output.dimshuffle(2,0,1,3)[:,:,:,0]
    # NOTE : when we pass 1 or 2 instead of 0, get IndexError: index out of bounds
    # not sure why squeeze wouldn't work though

    # output : (maxlen-width+1) X n_samples X nkernels 

    return output
    # emb : maxlen X n_samples X dim_word_src 
開發者ID:nyu-dl,項目名稱:dl4mt-c2c,代碼行數:43,代碼來源:mixer.py

示例7: multi_scale_conv_encoder

# 需要導入模塊: from theano.tensor import nnet [as 別名]
# 或者: from theano.tensor.nnet import conv2d [as 別名]
def multi_scale_conv_encoder(tparams, state_below, options, prefix='conv_enc',
              one_step=False, init_state=None, width=None, nkernels=None, pool_window=None, pool_stride=None, **kwargs):
    # state_below.shape = (maxlen_x_pad + 2*pool_stride, n_samples, dim_word_src)
    # mask.shape = (maxlen_x_pad/pool_stride, n_samples)
    assert len(width) == len(nkernels)

    data = state_below.dimshuffle(1,2,0,'x')
    # data.shape = (n_samples, dim_word_src, maxlen_x_pad + 2*pool_stride, 1)

    W = [tparams[_p(prefix, 'convW')+str(idx)] for idx in range(len(width))]
    b = [tparams[_p(prefix, 'convB')+str(idx)] for idx in range(len(width))]

    output = []

    for idx in range(len(width)):
        curr_width = width[idx]

        output.append(dnn_conv(data, W[idx], border_mode='half', precision='float32'))
        # output[idx].shape = (n_samples, nkernels[idx], (maxlen_x_pad + 2*pool_stride), 1)

        if curr_width % 2 == 0:
            output[idx] = (output[idx])[:,:,:-1,:] # for filters with an even numbered width, half convolution yields an output whose length is 1 longer than the input, hence discarding the last one here. For more detail, consult http://deeplearning.net/software/theano/library/tensor/nnet/conv.html#theano.tensor.nnet.conv2d

        output[idx] = tensor.nnet.relu(output[idx] + b[idx].dimshuffle('x',0,'x','x'))

    result = tensor.concatenate(output, axis=1)
    # result.shape = (n_samples, sum(nkernels), (maxlen_x_pad + 2*pool_stride), 1)

    result = dnn_pool(result, (pool_window, 1), stride=(pool_stride, 1), mode='max', pad=(0, 0))
    # result.shape = (n_samples, sum(nkernels), (maxlen_x_pad/pool_stride + 2), 1)

    result = result.dimshuffle(2,0,1,3)[1:-1,:,:,0]
    # We get rid of the first and the last result and shuffle.
    # result.shape = (maxlen_x_pad/pool_stride, n_samples, sum(nkernels))

    return result 
開發者ID:nyu-dl,項目名稱:dl4mt-c2c,代碼行數:38,代碼來源:mixer.py

示例8: conv1d_sc

# 需要導入模塊: from theano.tensor import nnet [as 別名]
# 或者: from theano.tensor.nnet import conv2d [as 別名]
def conv1d_sc(input, filters, input_shape=None, filter_shape=None,
              border_mode='valid', subsample=(1,)):
    """
    Using conv2d with a single input channel.

    border_mode has to be 'valid' at the moment.
    """
    if border_mode != 'valid':
        log.error("Unsupported border_mode for conv1d_sc: "
                  "%s" % border_mode)
        raise RuntimeError("Unsupported border_mode for conv1d_sc: "
                           "%s" % border_mode)

    image_shape = input_shape
    if image_shape is None:
        image_shape_sc = None
    else:
        # (b, c, i0) to (b, 1, c, i0)
        image_shape_sc = (image_shape[0], 1, image_shape[1], image_shape[2])

    if filter_shape is None:
        filter_shape_sc = None
    else:
        filter_shape_sc = (filter_shape[0], 1, filter_shape[1],
                           filter_shape[2])

    input_sc = input.dimshuffle(0, 'x', 1, 2)
    # We need to flip the channels dimension because it will be convolved over.
    filters_sc = filters.dimshuffle(0, 'x', 1, 2)[:, :, ::-1, :]

    conved = conv2d(input_sc, filters_sc, input_shape=image_shape_sc,
                    filter_shape=filter_shape_sc,
                    subsample=(1, subsample[0]))
    return conved[:, :, 0, :]  # drop the unused dimension 
開發者ID:vitruvianscience,項目名稱:OpenDeep,代碼行數:36,代碼來源:conv1d_implementations.py

示例9: conv1d_mc0

# 需要導入模塊: from theano.tensor import nnet [as 別名]
# 或者: from theano.tensor.nnet import conv2d [as 別名]
def conv1d_mc0(input, filters, input_shape=None, filter_shape=None,
               border_mode='valid', subsample=(1,)):
    """
    Using conv2d with width == 1.
    """
    image_shape = input_shape
    if image_shape is None:
        image_shape_mc0 = None
    else:
        # (b, c, i0) to (b, c, 1, i0)
        image_shape_mc0 = (image_shape[0], image_shape[1], 1, image_shape[2])

    if filter_shape is None:
        filter_shape_mc0 = None
    else:
        filter_shape_mc0 = (filter_shape[0], filter_shape[1], 1,
                            filter_shape[2])

    input_mc0 = input.dimshuffle(0, 1, 'x', 2)
    filters_mc0 = filters.dimshuffle(0, 1, 'x', 2)

    conved = conv2d(
        input_mc0, filters_mc0, input_shape=image_shape_mc0,
        filter_shape=filter_shape_mc0, subsample=(1, subsample[0]),
        border_mode=border_mode)
    return conved[:, :, 0, :]  # drop the unused dimension 
開發者ID:vitruvianscience,項目名稱:OpenDeep,代碼行數:28,代碼來源:conv1d_implementations.py

示例10: conv1d_mc1

# 需要導入模塊: from theano.tensor import nnet [as 別名]
# 或者: from theano.tensor.nnet import conv2d [as 別名]
def conv1d_mc1(input, filters, input_shape=None, filter_shape=None,
               border_mode='valid', subsample=(1,)):
    """
    Using conv2d with height == 1.
    """
    image_shape = input_shape
    if image_shape is None:
        image_shape_mc1 = None
    else:
        # (b, c, i0) to (b, c, i0, 1)
        image_shape_mc1 = (image_shape[0], image_shape[1], image_shape[2], 1)

    if filter_shape is None:
        filter_shape_mc1 = None
    else:
        filter_shape_mc1 = (filter_shape[0], filter_shape[1],
                            filter_shape[2], 1)

    input_mc1 = input.dimshuffle(0, 1, 2, 'x')
    filters_mc1 = filters.dimshuffle(0, 1, 2, 'x')

    conved = conv2d(
        input_mc1, filters_mc1, input_shape=image_shape_mc1,
        filter_shape=filter_shape_mc1, subsample=(subsample[0], 1),
        border_mode=border_mode)
    return conved[:, :, :, 0]  # drop the unused dimension 
開發者ID:vitruvianscience,項目名稱:OpenDeep,代碼行數:28,代碼來源:conv1d_implementations.py

示例11: conv1d

# 需要導入模塊: from theano.tensor import nnet [as 別名]
# 或者: from theano.tensor.nnet import conv2d [as 別名]
def conv1d(sequences, masks, **kwargs):
    """Wraps Theano conv2d to perform 1D convolution.

    Parameters
    ----------
    sequence : :class:`~theano.Variable`
        (batch_size, length)
    masks : :class:`~theano.Variable`
        (num_filters, filter_length)
    **kwargs
        Will be passed to `conv2d`

    Returns
    -------
    result : :class:`~theano.Variable`
        (batch_size, num_filters, position)

    """
    # For testability
    sequences = tensor.as_tensor_variable(sequences)
    masks = tensor.as_tensor_variable(masks)
    image = sequences.dimshuffle('x', 'x', 0, 1)
    filters = masks.dimshuffle(0, 'x', 'x', 1)
    result = conv2d(image, filters, **kwargs)
    # Now number of rows is the actual batch size
    result = result.dimshuffle(2, 1, 3, 0)
    return result.reshape(result.shape[:-1], ndim=3) 
開發者ID:rizar,項目名稱:attention-lvcsr,代碼行數:29,代碼來源:expressions.py

示例12: _train_fprop

# 需要導入模塊: from theano.tensor import nnet [as 別名]
# 或者: from theano.tensor.nnet import conv2d [as 別名]
def _train_fprop(self, state_below):
        conv_out = conv2d(state_below, self.W,
                                                  border_mode=self.border_mode,
                                                  subsample=self.stride)
        return conv_out + self.b.dimshuffle('x', 0, 'x', 'x') 
開發者ID:hycis,項目名稱:Mozi,代碼行數:7,代碼來源:convolution.py

示例13: conv

# 需要導入模塊: from theano.tensor import nnet [as 別名]
# 或者: from theano.tensor.nnet import conv2d [as 別名]
def conv( x, w, b=None ):
    s = int(np.floor(w.get_value().shape[-1]/2.))
    z = conv2d(x, w, border_mode='full')[:, :, s:-s, s:-s]
    if b is not None:
        z += b.dimshuffle('x', 0, 'x', 'x')

    return z 
開發者ID:anitan0925,項目名稱:vaegan,代碼行數:9,代碼來源:functions.py

示例14: build

# 需要導入模塊: from theano.tensor import nnet [as 別名]
# 或者: from theano.tensor.nnet import conv2d [as 別名]
def build(self, input_x, poolsize=(2, 2)):

        # convolve input feature maps with filters
        conv_out = tnnet.conv2d(input=input_x, filters=self.W,filter_shape=self.filter_shape)
        if self.non_linear=="tanh":
            conv_out_tanh = T.tanh(conv_out + self.b.dimshuffle('x', 0, 'x', 'x'))
            self.output = myMaxPool(conv_out_tanh, ps=self.poolsize, method=self.max_pool_method)
        elif self.non_linear=="relu":
            conv_out_tanh = ReLU(conv_out + self.b.dimshuffle('x', 0, 'x', 'x'))
            self.output = myMaxPool(conv_out_tanh, ps=self.poolsize, method=self.max_pool_method)
        else:
            pooled_out = myMaxPool(conv_out, ps=self.poolsize, method=self.max_pool_method)
            self.output = pooled_out + self.b.dimshuffle('x', 0, 'x', 'x') 
開發者ID:rakshithShetty,項目名稱:captionGAN,代碼行數:15,代碼來源:cnn_evaluatorTheano.py

示例15: test_conv

# 需要導入模塊: from theano.tensor import nnet [as 別名]
# 或者: from theano.tensor.nnet import conv2d [as 別名]
def test_conv(self):
        for conv_op in [conv.conv2d, conv2d]:
            for border_mode in ['valid', 'full']:
                image_shape = (2, 2, 4, 5)
                filter_shape = (2, 2, 2, 3)
                image_dim = len(image_shape)
                filter_dim = len(filter_shape)
                input = tensor.TensorType(
                    theano.config.floatX,
                    [False] * image_dim)(name='input')
                filters = tensor.TensorType(
                    theano.config.floatX,
                    [False] * filter_dim)(name='filter')
                ev_input = tensor.TensorType(
                    theano.config.floatX,
                    [False] * image_dim)(name='ev_input')
                ev_filters = tensor.TensorType(
                    theano.config.floatX,
                    [False] * filter_dim)(name='ev_filters')

                def sym_conv2d(input, filters):
                    return conv_op(input, filters, border_mode=border_mode)
                output = sym_conv2d(input, filters).flatten()
                yv = tensor.Rop(output, [input, filters], [ev_input, ev_filters])
                rop_f = function([input, filters, ev_input, ev_filters],
                                 yv, on_unused_input='ignore')
                sy, _ = theano.scan(lambda i, y, x1, x2, v1, v2:
                                    (tensor.grad(y[i], x1) * v1).sum() +
                                    (tensor.grad(y[i], x2) * v2).sum(),
                                    sequences=tensor.arange(output.shape[0]),
                                    non_sequences=[output, input, filters,
                                                   ev_input, ev_filters])
                scan_f = function([input, filters, ev_input, ev_filters], sy,
                                  on_unused_input='ignore')
                dtype = theano.config.floatX
                image_data = numpy.random.random(image_shape).astype(dtype)
                filter_data = numpy.random.random(filter_shape).astype(dtype)
                ev_image_data = numpy.random.random(image_shape).astype(dtype)
                ev_filter_data = numpy.random.random(filter_shape).astype(dtype)
                v1 = rop_f(image_data, filter_data, ev_image_data, ev_filter_data)
                v2 = scan_f(image_data, filter_data, ev_image_data, ev_filter_data)
                assert numpy.allclose(v1, v2), ("Rop mismatch: %s %s" % (v1, v2)) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:44,代碼來源:test_rop.py


注:本文中的theano.tensor.nnet.conv2d方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。