當前位置: 首頁>>代碼示例>>Python>>正文


Python tensor.neq方法代碼示例

本文整理匯總了Python中theano.tensor.neq方法的典型用法代碼示例。如果您正苦於以下問題:Python tensor.neq方法的具體用法?Python tensor.neq怎麽用?Python tensor.neq使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在theano.tensor的用法示例。


在下文中一共展示了tensor.neq方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: build_cost

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import neq [as 別名]
def build_cost(logits, targets):
    """
    Build a classification cost function.
    """
    # Clip gradients coming from the cost function.
    logits = theano.gradient.grad_clip(
        logits, -1. * FLAGS.clipping_max_value, FLAGS.clipping_max_value)

    predicted_dist = T.nnet.softmax(logits)

    costs = T.nnet.categorical_crossentropy(predicted_dist, targets)
    cost = costs.mean()

    pred = T.argmax(logits, axis=1)
    acc = 1. - T.mean(T.cast(T.neq(pred, targets), theano.config.floatX))

    return cost, acc 
開發者ID:stanfordnlp,項目名稱:spinn,代碼行數:19,代碼來源:classifier.py

示例2: errors

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import neq [as 別名]
def errors(self, y):
        """Return a float representing the number of errors in the minibatch
        over the total number of examples of the minibatch ; zero one
        loss over the size of the minibatch

        :type y: theano.tensor.TensorType
        :param y: corresponds to a vector that gives for each example the
                  correct label
        """

        # check if y has same dimension of y_pred
        if y.ndim != self.y_pred.ndim:
            raise TypeError(
                'y should have the same shape as self.y_pred',
                ('y', y.type, 'y_pred', self.y_pred.type)
            )
        # check if y is of the correct datatype
        if y.dtype.startswith('int'):
            # the T.neq operator returns a vector of 0s and 1s, where 1
            # represents a mistake in prediction
            return T.mean(T.neq(self.y_pred, y))
        else:
            raise NotImplementedError() 
開發者ID:hantek,項目名稱:deeplearn_hsi,代碼行數:25,代碼來源:logistic_sgd.py

示例3: compute_emb

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import neq [as 別名]
def compute_emb(x, W):

    def _step(xi, emb, W):
        if prm.att_doc:
            new_shape = (xi.shape[0], xi.shape[1], xi.shape[2], prm.dim_emb)
        else:
            new_shape = (xi.shape[0], xi.shape[1], prm.dim_emb)

        out = W[xi.flatten()].reshape(new_shape).sum(-2)
        return out / tensor.maximum(1., tensor.neq(xi,-1).astype('float32').sum(-1, keepdims=True))

    if prm.att_doc:
        emb_init = tensor.alloc(0., x.shape[1], x.shape[2], prm.dim_emb)
    else:
        emb_init = tensor.alloc(0., x.shape[1], prm.dim_emb)

    (embs), scan_updates = theano.scan(_step,
                                sequences=[x],
                                outputs_info=[emb_init],
                                non_sequences=[W],
                                name='emb_scan',
                                n_steps=x.shape[0])

    return embs 
開發者ID:nyu-dl,項目名稱:dl4ir-webnav,代碼行數:26,代碼來源:neuagent.py

示例4: errors4one

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import neq [as 別名]
def errors4one(self, z, out, weight=None, distLabelType='12C'):
	distBins = config.distCutoffs[distLabelType]
	label8 = DistanceUtils.LabelsOfOneDistance(config.ContactDefinition, distBins)
	label15 = DistanceUtils.LabelsOfOneDistance(config.InteractionLimit, distBins)

	z3C = T.cast( T.ge(z, label8), 'int32') + T.cast( T.ge(z, label15), 'int32')
	o3C = T.cast( T.ge(out, label8), 'int32') + T.cast( T.ge(out, label15), 'int32')

	if weight is not None:
            err = T.sum( T.mul(weight, T.neq(o3C, z3C) ) )*1./T.sum(weight)
	else:
            err = T.mean( T.neq(o3C , z3C) ) 

	## err is s scalar, convert it to a tensor with ndim=1
	return T.stack([err] )

    ## this function returns a vector of errors, the size of this vector is equal to the sum of ValueDims for all the responses 
開發者ID:j3xugit,項目名稱:RaptorX-Contact,代碼行數:19,代碼來源:Model4DistancePrediction.py

示例5: errors

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import neq [as 別名]
def errors(self, y, sampleWeight=None):
        ###Return the 0-1 error rate in a minibatch y: a vector of true labels

        # check if y has same dimension of y_pred
        if y.ndim != self.y_pred.ndim:
            raise TypeError(
                'y should have the same shape as self.y_pred',
                ('y', y.type, 'y_pred', self.y_pred.type)
            )
        # check if y is of the correct datatype
        if y.dtype.startswith('int'):
            # the T.neq operator returns a vector of 0s and 1s, where 1 represents a mistake in prediction
            if sampleWeight is not None:
                return T.sum( T.mul(sampleWeight, T.neq(self.y_pred, y) ) ) * 1./T.sum(sampleWeight)
            else:
                return T.mean(T.neq(self.y_pred, y))
        else:
            raise NotImplementedError()


### A neural network Logistic Regression for Classification 
開發者ID:j3xugit,項目名稱:RaptorX-Contact,代碼行數:23,代碼來源:NN4LogReg.py

示例6: recurrence_relation

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import neq [as 別名]
def recurrence_relation(y, y_mask, blank_symbol):
        n_y = y.shape[0]
        blanks = tensor.zeros((2, y.shape[1])) + blank_symbol
        ybb = tensor.concatenate((y, blanks), axis=0).T
        sec_diag = (tensor.neq(ybb[:, :-2], ybb[:, 2:]) *
                    tensor.eq(ybb[:, 1:-1], blank_symbol) *
                    y_mask.T)

        # r1: LxL
        # r2: LxL
        # r3: LxLxB
        r2 = tensor.eye(n_y, k=1)
        r3 = (tensor.eye(n_y, k=2).dimshuffle(0, 1, 'x') *
              sec_diag.dimshuffle(1, 'x', 0))

        return r2, r3 
開發者ID:mohammadpz,項目名稱:CTC-Connectionist-Temporal-Classification,代碼行數:18,代碼來源:ctc_cost.py

示例7: errors

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import neq [as 別名]
def errors(self, y):
        """Return a float representing the number of errors in the minibatch
        over the total number of examples of the minibatch ; zero one
        loss over the size of the minibatch

        :type y: theano.tensor.TensorType
        :param y: corresponds to a vector that gives for each example the
                  correct label
        """

        # check if y has same dimension of y_pred
        if y.ndim != self.class_prediction.ndim:
            raise TypeError('y should have the same shape as self.class_prediction',
                ('y', y.type, 'class_prediction', self.class_prediction.type))
        # check if y is of the correct datatype
        if y.dtype.startswith('int'):
            # the T.neq operator returns a vector of 0s and 1s, where 1
            # represents a mistake in prediction
            return T.mean(T.neq(self.class_prediction, y))
        else:
            print "something went wrong"
            raise NotImplementedError() 
開發者ID:GUR9000,項目名稱:Deep_MRI_brain_extraction,代碼行數:24,代碼來源:NN_ConvLayer_2D.py

示例8: errors

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import neq [as 別名]
def errors(self, y):
        """ Return a float representing the rel. number of errors in the minibatch (0 to 1=all wrong)
            0-1 loss over the size of the minibatch

        :type y: theano.tensor.TensorType
        :param y: corresponds to a vector that gives for each example the
                  correct label
        """
        # check if y has same dimension of class_prediction
        if y.ndim != self.class_prediction.ndim:
            raise TypeError('y should have the same shape as self.class_prediction',
                ('y', y.type, 'class_prediction', self.class_prediction.type))
        # check if y is of the correct datatype
        if y.dtype.startswith('int'):
            # the T.neq operator returns a vector of 0s and 1s, where 1
            # represents a mistake in prediction
            return T.mean(T.neq(self.class_prediction, y), dtype='float32')
        else:
            raise NotImplementedError() 
開發者ID:GUR9000,項目名稱:Deep_MRI_brain_extraction,代碼行數:21,代碼來源:NN_PerceptronLayer.py

示例9: apply

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import neq [as 別名]
def apply(self, y, y_hat):
        # Support checkpoints that predate self.top_k
        top_k = getattr(self, 'top_k', 1)
        if top_k == 1:
            mistakes = tensor.neq(y, y_hat.argmax(axis=1))
        else:
            row_offsets = theano.tensor.arange(0, y_hat.flatten().shape[0],
                                               y_hat.shape[1])
            truth_score = y_hat.flatten()[row_offsets + y]
            # We use greater than _or equals_ here so that the model
            # _must_ have its guess in the top k, and cannot extend
            # its effective "list of predictions" by tying lots of things
            # for k-th place.
            higher_scoring = tensor.ge(y_hat, truth_score.dimshuffle(0, 'x'))
            # Because we used greater-than-or-equal we have to correct for
            # counting the true label.
            num_higher = higher_scoring.sum(axis=1) - 1
            mistakes = tensor.ge(num_higher, top_k)
        return mistakes.mean(dtype=theano.config.floatX) 
開發者ID:rizar,項目名稱:attention-lvcsr,代碼行數:21,代碼來源:cost.py

示例10: errors

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import neq [as 別名]
def errors(self, y):
        """Return a float representing the number of errors in the minibatch ;
    zero one loss over the size of the minibatch

    :type y: theano.tensor.TensorType
    :param y: corresponds to a vector that gives for each example the
    correct label
    """

        # check if y has same dimension of y_pred
        if y.ndim != self.y_pred.ndim:
            raise TypeError('y should have the same shape as self.y_pred',
                ('y', target.type, 'y_pred', self.y_pred.type))
        # check if y is of the correct datatype
        if y.dtype.startswith('int'):
            # the T.neq operator returns a vector of 0s and 1s, where 1
            # represents a mistake in prediction
            return T.mean(T.neq(self.y_pred, y))
        else:
            raise NotImplementedError() 
開發者ID:SenticNet,項目名稱:personality-detection,代碼行數:22,代碼來源:conv_net_classes.py

示例11: _create_get_word_prob_function

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import neq [as 別名]
def _create_get_word_prob_function(self):
        """Creates a Theano function that returns the unigram probability of a
        word within its class.
        """

        word_id = tensor.scalar('word_id', dtype=self._count_type)
        word_id.tag.test_value = 0

        word_count = self._word_counts[word_id]
        class_id = self._word_to_class[word_id]
        class_count = self._class_counts[class_id]
        result = tensor.switch(tensor.neq(class_count, 0),
                               word_count / class_count,
                               0)

        self.get_word_prob = theano.function(
            [word_id],
            result,
            name='get_word_prob') 
開發者ID:senarvi,項目名稱:theanolm,代碼行數:21,代碼來源:theanobigramoptimizer.py

示例12: errors

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import neq [as 別名]
def errors(self, y):
        """Return a float representing the number of errors in the minibatch ;
    zero one loss over the size of the minibatch
    
    :type y: theano.tensor.TensorType
    :param y: corresponds to a vector that gives for each example the
    correct label
    """

        # check if y has same dimension of y_pred
        if y.ndim != self.y_pred.ndim:
            raise TypeError('y should have the same shape as self.y_pred',
                ('y', target.type, 'y_pred', self.y_pred.type))
        # check if y is of the correct datatype
        if y.dtype.startswith('int'):
            # the T.neq operator returns a vector of 0s and 1s, where 1
            # represents a mistake in prediction
            return T.mean(T.neq(self.y_pred, y))
        else:
            raise NotImplementedError() 
開發者ID:UKPLab,項目名稱:deeplearning4nlp-tutorial,代碼行數:22,代碼來源:conv_net_classes.py

示例13: get_layer_monitoring_channels

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import neq [as 別名]
def get_layer_monitoring_channels(self, state_below=None, state=None,
                                      target=None):

        mx = state.max(axis=1)

        rval = OrderedDict([('mean_max_class', mx.mean()),
                            ('max_max_class', mx.max()),
                            ('min_max_class', mx.min())])

        if target is not None:
            y_hat = T.argmax(state, axis=1)
            y = T.argmax(target, axis=1)
            misclass = T.neq(y, y_hat).mean()
            misclass = T.cast(misclass, config.floatX)
            rval['misclass'] = misclass
            rval['nll'] = self.cost(Y_hat=state, Y=target)
            rval['ppl'] = 2 ** (rval['nll'] / T.log(2))

        return rval 
開發者ID:zchengquan,項目名稱:TextDetector,代碼行數:21,代碼來源:mlp.py

示例14: errors

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import neq [as 別名]
def errors(self, y):
        """
        誤差計算函數。傳入的參數參考negative_log_likehood.

        其作用就是統計預測正確的樣本數占本批次總樣本數的比例。               
        """
        
        # 檢查 傳入正確標簽向量y和前麵做出的預測向量y_pred是否是具有相同的維度。如果不相同怎麽去判斷某個樣本預測的對還是不對?
        # y.ndim返回y的維數
        # raise是拋出異常
        if y.ndim != self.y_pred.ndim:
            raise TypeError("y doesn't have the same shape as self.y_pred")
        
        # 繼續檢查y是否是有效數據。依據就是本實驗中正確標簽數據的存儲類型是int
        # 如果數據有效,則計算:
        # T.neq(y1, y2)是計算y1與y2對應元素是否相同,如果相同便是0,否則是1。
        # 舉例:如果y1=[1,2,3,4,5,6,7,8,9,0] y2=[1,1,3,3,5,6,7,8,9,0]
        # 則,err = T.neq(y1,y2) = [0,1,0,1,0,0,0,0,0,0],其中有3個1,即3個元素不同
        # T.mean()的作用就是求均值。那麽T.mean(err) = (0+1+0+1+0+0+0+0+0+0)/10 = 0.3,即誤差率為30%
        if y.dtype.startswith('int'):
            return T.mean(T.neq(self.y_pred, y))
        else:
            raise NotImplementedError() 
開發者ID:niuwei22007,項目名稱:Tig-CNNs,代碼行數:25,代碼來源:lr.py

示例15: compute_tensor

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import neq [as 別名]
def compute_tensor(self, x):
        if self.cached:
            if x.ndim == 1:
                ret_tensor = self.onehot_list[x]
            else:
                ret_tensor = self.onehot_list[x.flatten()].reshape((x.shape[0], x.shape[1], self.vocab_size))
        else:
            ret_tensor = onehot_tensor(x, self.vocab_size)
        if self.zero_index != None:
            mask = T.neq(x, self.zero_index)
            if x.ndim == 1:
                ret_tensor *= mask[:, None]
            else:
                ret_tensor *= mask[:, :, None]
        if self.mask:
            if x.ndim == 1:
                ret_tensor *= self.mask[:, None]
            else:
                ret_tensor *= self.mask[:, :, None]
        return ret_tensor 
開發者ID:zomux,項目名稱:deepy,代碼行數:22,代碼來源:onehot_embed.py


注:本文中的theano.tensor.neq方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。