當前位置: 首頁>>代碼示例>>Python>>正文


Python tensor.mean方法代碼示例

本文整理匯總了Python中theano.tensor.mean方法的典型用法代碼示例。如果您正苦於以下問題:Python tensor.mean方法的具體用法?Python tensor.mean怎麽用?Python tensor.mean使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在theano.tensor的用法示例。


在下文中一共展示了tensor.mean方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: batch_normalization

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import mean [as 別名]
def batch_normalization(x, mean, var, beta, gamma, epsilon=1e-3):
    '''Apply batch normalization on x given mean, var, beta and gamma.
    '''
    # TODO remove this if statement when Theano without
    # T.nnet.bn.batch_normalization_test is deprecated
    if not hasattr(T.nnet.bn, 'batch_normalization_test'):
        return _old_batch_normalization(x, mean, var, beta, gamma, epsilon)

    if mean.ndim == 1:
        # based on TensorFlow's default: normalize along rightmost dimension
        reduction_axes = range(x.ndim - 1)
    else:
        reduction_axes = [i for i in range(x.ndim) if mean.broadcastable[i]]

    return T.nnet.bn.batch_normalization_test(
        x, gamma, beta, mean, var, reduction_axes, epsilon)


# TODO remove this function when Theano without
# T.nnet.bn.batch_normalization_train is deprecated 
開發者ID:lingluodlut,項目名稱:Att-ChemdNER,代碼行數:22,代碼來源:theano_backend.py

示例2: build_cost

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import mean [as 別名]
def build_cost(logits, targets):
    """
    Build a classification cost function.
    """
    # Clip gradients coming from the cost function.
    logits = theano.gradient.grad_clip(
        logits, -1. * FLAGS.clipping_max_value, FLAGS.clipping_max_value)

    predicted_dist = T.nnet.softmax(logits)

    costs = T.nnet.categorical_crossentropy(predicted_dist, targets)
    cost = costs.mean()

    pred = T.argmax(logits, axis=1)
    acc = 1. - T.mean(T.cast(T.neq(pred, targets), theano.config.floatX))

    return cost, acc 
開發者ID:stanfordnlp,項目名稱:spinn,代碼行數:19,代碼來源:classifier.py

示例3: errors

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import mean [as 別名]
def errors(self, y):
        """Return a float representing the number of errors in the minibatch
        over the total number of examples of the minibatch ; zero one
        loss over the size of the minibatch

        :type y: theano.tensor.TensorType
        :param y: corresponds to a vector that gives for each example the
                  correct label
        """

        # check if y has same dimension of y_pred
        if y.ndim != self.y_pred.ndim:
            raise TypeError(
                'y should have the same shape as self.y_pred',
                ('y', y.type, 'y_pred', self.y_pred.type)
            )
        # check if y is of the correct datatype
        if y.dtype.startswith('int'):
            # the T.neq operator returns a vector of 0s and 1s, where 1
            # represents a mistake in prediction
            return T.mean(T.neq(self.y_pred, y))
        else:
            raise NotImplementedError() 
開發者ID:hantek,項目名稱:deeplearn_hsi,代碼行數:25,代碼來源:logistic_sgd.py

示例4: __init__

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import mean [as 別名]
def __init__(self, prev_layer, n_out, params=None, bias=True):
        super().__init__(prev_layer)
        self._bias = bias
        n_in = self._input_shape[-1]

        if params is None:
            self.W = Weight((n_in, n_out), is_bias=False)
            if bias:
                self.b = Weight((n_out,), is_bias=True, mean=0.1, filler='constant')
        else:
            self.W = params[0]
            if bias:
                self.b = params[1]

        # parameters of the model
        self.params = [self.W]
        if bias:
            self.params.append(self.b)

        self._output_shape = [self._input_shape[0]]
        self._output_shape.extend(self._input_shape[1:-1])
        self._output_shape.append(n_out) 
開發者ID:chrischoy,項目名稱:3D-R2N2,代碼行數:24,代碼來源:layers.py

示例5: get_output_for

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import mean [as 別名]
def get_output_for(self, input, init=False, **kwargs):
        if input.ndim > 2:
            # if the input has more than two dimensions, flatten it into a
            # batch of feature vectors.
            input = input.flatten(2)
        
        activation = T.tensordot(input, self.W, [[1], [0]])
        abs_dif = (T.sum(abs(activation.dimshuffle(0,1,2,'x') - activation.dimshuffle('x',1,2,0)),axis=2)
                    + 1e6 * T.eye(input.shape[0]).dimshuffle(0,'x',1))

        if init:
            mean_min_abs_dif = 0.5 * T.mean(T.min(abs_dif, axis=2),axis=0)
            abs_dif /= mean_min_abs_dif.dimshuffle('x',0,'x')
            self.init_updates = [(self.log_weight_scale, self.log_weight_scale-T.log(mean_min_abs_dif).dimshuffle(0,'x'))]
        
        f = T.sum(T.exp(-abs_dif),axis=2)

        if init:
            mf = T.mean(f,axis=0)
            f -= mf.dimshuffle('x',0)
            self.init_updates.append((self.b, -mf))
        else:
            f += self.b.dimshuffle('x',0)

        return T.concatenate([input, f], axis=1) 
開發者ID:djsutherland,項目名稱:opt-mmd,代碼行數:27,代碼來源:nn.py

示例6: __init__

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import mean [as 別名]
def __init__(self):
        X_in = T.matrix('X_in')
        u = T.matrix('u')
        s = T.vector('s')
        eps = T.scalar('eps')

        X_ = X_in - T.mean(X_in, 0)
        sigma = T.dot(X_.T, X_) / X_.shape[0]
        self.sigma = theano.function([X_in], sigma, allow_input_downcast=True)

        Z = T.dot(T.dot(u, T.nlinalg.diag(1. / T.sqrt(s + eps))), u.T)
        X_zca = T.dot(X_, Z.T)
        self.compute_zca = theano.function([X_in, u, s, eps], X_zca, allow_input_downcast=True)

        self._u = None
        self._s = None 
開發者ID:iamshang1,項目名稱:Projects,代碼行數:18,代碼來源:preprocessing.py

示例7: get_cost_updates

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import mean [as 別名]
def get_cost_updates(self, lr=0.1, persistent=None, k=1):
        pre_sigmoid_ph, ph_mean, ph_sample = self.sample_h_given_v(self.input)
        if persistent is None:
            chain_start = ph_sample
        else:
            chain_start = persistent
        ([pre_sigmoid_nvs,nv_means,nv_samples,pre_sigmoid_nhs,nh_means,nh_samples],updates) = \
            theano.scan(self.gibbs_step, outputs_info=[None, None, None, None, None, chain_start],n_steps=k,name="gibbs_step")
        chain_end = nv_samples[-1]
        cost = T.mean(self.free_energy(self.input)) - T.mean(self.free_energy(chain_end))
        gparams = T.grad(cost, self.params, consider_constant=[chain_end])
        for gparam, param in zip(gparams, self.params):
            updates[param] = param - gparam * T.cast(lr,dtype=theano.config.floatX)
        if persistent:
            updates[persistent] = nh_samples[-1]
            monitoring_cost = self.get_pseudo_likelihood_cost(updates)  
        else:
            monitoring_cost = self.get_reconstruction_cost(updates,pre_sigmoid_nvs[-1])
        return monitoring_cost, updates 
開發者ID:iamshang1,項目名稱:Projects,代碼行數:21,代碼來源:rbm_pretraining.py

示例8: accuracy_instance

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import mean [as 別名]
def accuracy_instance(predictions, targets, n=[1, 2, 3, 4, 5, 10], \
        nb_classes=5, nb_samples_per_class=10, batch_size=1):
    accuracy_0 = theano.shared(np.zeros((batch_size, nb_samples_per_class), \
        dtype=theano.config.floatX))
    indices_0 = theano.shared(np.zeros((batch_size, nb_classes), \
        dtype=np.int32))
    batch_range = T.arange(batch_size)
    def step_(p, t, acc, idx):
        acc = T.inc_subtensor(acc[batch_range, idx[batch_range, t]], T.eq(p, t))
        idx = T.inc_subtensor(idx[batch_range, t], 1)
        return (acc, idx)
    (raw_accuracy, _), _ = theano.foldl(step_, sequences=[predictions.dimshuffle(1, 0), \
        targets.dimshuffle(1, 0)], outputs_info=[accuracy_0, indices_0])
    accuracy = T.mean(raw_accuracy / nb_classes, axis=0)

    return accuracy 
開發者ID:tristandeleu,項目名稱:ntm-one-shot,代碼行數:18,代碼來源:metrics.py

示例9: negative_log_likelihood

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import mean [as 別名]
def negative_log_likelihood(self, y):
        """Return the mean of the negative log-likelihood of the prediction
        of this model under a given target distribution.

        .. math::

            \frac{1}{|\mathcal{D}|} \mathcal{L} (\theta=\{W,b\}, \mathcal{D}) =
            \frac{1}{|\mathcal{D}|} \sum_{i=0}^{|\mathcal{D}|} \log(P(Y=y^{(i)}|x^{(i)}, W,b)) \\
                \ell (\theta=\{W,b\}, \mathcal{D})

        :type y: theano.tensor.TensorType
        :param y: corresponds to a vector that gives for each example the
                  correct label

        Note: we use the mean instead of the sum so that
              the learning rate is less dependent on the batch size
        """
        # y.shape[0] is (symbolically) the number of rows in y, i.e., number of examples (call it n) in the minibatch
        # T.arange(y.shape[0]) is a symbolic vector which will contain [0,1,2,... n-1]
        # T.log(self.p_y_given_x) is a matrix of Log-Probabilities (call it LP) with one row per example and one column per class
        # LP[T.arange(y.shape[0]),y] is a vector v containing [LP[0,y[0]], LP[1,y[1]], LP[2,y[2]], ..., LP[n-1,y[n-1]]]
        # and T.mean(LP[T.arange(y.shape[0]),y]) is the mean (across minibatch examples) of the elements in v,
        # i.e., the mean log-likelihood across the minibatch.
        return T.log(self.p_y_given_x[T.arange(y.shape[0]), y]) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:26,代碼來源:mlp_test.py

示例10: model_loss

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import mean [as 別名]
def model_loss(y, model, mean=True):
    """
    Define loss of Theano graph
    :param y: correct labels
    :param model: output of the model
    :return: return mean of loss if True, otherwise return vector with per
             sample loss
    """
    warnings.warn("CleverHans support for Theano is deprecated and "
                  "will be dropped on 2017-11-08.")

    from_logits = "softmax" not in str(model).lower()

    if from_logits:
        model = T.nnet.softmax(model)

    out = T.nnet.categorical_crossentropy(model, y)

    if mean:
        out = T.mean(out)
    return out 
開發者ID:evtimovi,項目名稱:robust_physical_perturbations,代碼行數:23,代碼來源:utils_th.py

示例11: create_G

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import mean [as 別名]
def create_G(loss_type=None, discriminator=None, lr=0.0002, b1=0.5, ngf=64): 
    noise = T.matrix('noise')
    generator = models_uncond.build_generator_128(noise,ngf=ngf)
    Tgimgs = lasagne.layers.get_output(generator)
    Tfake_out = lasagne.layers.get_output(discriminator, Tgimgs)
    
    if loss_type == 'trickLogD':
        generator_loss = lasagne.objectives.binary_crossentropy(Tfake_out, 1).mean()
    elif loss_type == 'minimax': 
        generator_loss = -lasagne.objectives.binary_crossentropy(Tfake_out, 0).mean()
    elif loss_type == 'ls': 
        generator_loss = T.mean(T.sqr((Tfake_out - 1)))
    
    generator_params = lasagne.layers.get_all_params(generator, trainable=True)
    updates_g = lasagne.updates.adam(generator_loss, generator_params, learning_rate=lr, beta1=b1)
    train_g = theano.function([noise],
                              generator_loss,
                              updates=updates_g)
    gen_fn = theano.function([noise],
                         lasagne.layers.get_output(generator,
                              deterministic=True))
    return train_g, gen_fn, generator 
開發者ID:WANG-Chaoyue,項目名稱:EvolutionaryGAN,代碼行數:24,代碼來源:train_face_128.py

示例12: create_G

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import mean [as 別名]
def create_G(loss_type=None, discriminator=None, lr=0.0002, b1=0.5, ngf=64): 
    noise = T.matrix('noise')
    generator = models_uncond.build_generator_64(noise,ngf=ngf)
    Tgimgs = lasagne.layers.get_output(generator)
    Tfake_out = lasagne.layers.get_output(discriminator, Tgimgs)
    
    if loss_type == 'trickLogD':
        generator_loss = lasagne.objectives.binary_crossentropy(Tfake_out, 1).mean()
    elif loss_type == 'minimax': 
        generator_loss = -lasagne.objectives.binary_crossentropy(Tfake_out, 0).mean()
    elif loss_type == 'ls': 
        generator_loss = T.mean(T.sqr((Tfake_out - 1)))
    
    generator_params = lasagne.layers.get_all_params(generator, trainable=True)
    updates_g = lasagne.updates.adam(generator_loss, generator_params, learning_rate=lr, beta1=b1)
    train_g = theano.function([noise],
                              generator_loss,
                              updates=updates_g)
    
    gen_fn = theano.function([noise],
                         lasagne.layers.get_output(generator,
                              deterministic=True))
    
    return train_g, gen_fn, generator 
開發者ID:WANG-Chaoyue,項目名稱:EvolutionaryGAN,代碼行數:26,代碼來源:train_bedroom_64.py

示例13: create_G

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import mean [as 別名]
def create_G(loss_type=None, discriminator=None, lr=0.0002, b1=0.5, DIM=64): 
    noise = T.matrix('noise')
    generator = models_uncond.build_generator_toy(noise,nd=DIM)
    Tgimgs = lasagne.layers.get_output(generator)
    Tfake_out = lasagne.layers.get_output(discriminator, Tgimgs)
    
    if loss_type == 'trickLogD':
        generator_loss = lasagne.objectives.binary_crossentropy(Tfake_out, 1).mean()
    elif loss_type == 'minimax': 
        generator_loss = -lasagne.objectives.binary_crossentropy(Tfake_out, 0).mean()
    elif loss_type == 'ls': 
        generator_loss = T.mean(T.sqr((Tfake_out - 1)))
    generator_params = lasagne.layers.get_all_params(generator, trainable=True)
    updates_g = lasagne.updates.adam(generator_loss, generator_params, learning_rate=lr, beta1=b1)
    train_g = theano.function([noise],
                              generator_loss,
                              updates=updates_g)
    gen_fn = theano.function([noise],
                         lasagne.layers.get_output(generator,
                              deterministic=True))
    return train_g, gen_fn, generator 
開發者ID:WANG-Chaoyue,項目名稱:EvolutionaryGAN,代碼行數:23,代碼來源:train_toy_8G.py

示例14: random_normal_variable

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import mean [as 別名]
def random_normal_variable(shape, mean, scale, dtype=None, name=None):
    return variable(np.random.normal(loc=0.0, scale=scale, size=shape),
                    dtype=dtype, name=name) 
開發者ID:lingluodlut,項目名稱:Att-ChemdNER,代碼行數:5,代碼來源:theano_backend.py

示例15: mean

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import mean [as 別名]
def mean(x, axis=None, keepdims=False):
    '''Mean of a tensor, alongside the specified axis.
    '''
    dtype = None
    # bool is available since theano v0.9dev
    if 'int' in x.dtype or x.dtype == 'bool':
        dtype = floatx()
    return T.mean(x, axis=axis, keepdims=keepdims, dtype=dtype) 
開發者ID:lingluodlut,項目名稱:Att-ChemdNER,代碼行數:10,代碼來源:theano_backend.py


注:本文中的theano.tensor.mean方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。