當前位置: 首頁>>代碼示例>>Python>>正文


Python tensor.lt方法代碼示例

本文整理匯總了Python中theano.tensor.lt方法的典型用法代碼示例。如果您正苦於以下問題:Python tensor.lt方法的具體用法?Python tensor.lt怎麽用?Python tensor.lt使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在theano.tensor的用法示例。


在下文中一共展示了tensor.lt方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_elemwise_comparaison_cast

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import lt [as 別名]
def test_elemwise_comparaison_cast():
    """
    test if an elemwise comparaison followed by a cast to float32 are
    pushed to gpu.
    """

    a = tensor.fmatrix()
    b = tensor.fmatrix()
    av = theano._asarray(numpy.random.rand(4, 4), dtype='float32')
    bv = numpy.ones((4, 4), dtype='float32')

    for g, ans in [(tensor.lt, av < bv), (tensor.gt, av > bv),
                   (tensor.le, av <= bv), (tensor.ge, av >= bv)]:

        f = pfunc([a, b], tensor.cast(g(a, b), 'float32'), mode=mode_with_gpu)

        out = f(av, bv)
        assert numpy.all(out == ans)
        assert any([isinstance(node.op, cuda.GpuElemwise)
                    for node in f.maker.fgraph.toposort()]) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:22,代碼來源:test_basic_ops.py

示例2: rprop_core

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import lt [as 別名]
def rprop_core(params, gradients, rprop_increase=1.01, rprop_decrease=0.99, rprop_min_step=0, rprop_max_step=100,
               learning_rate=0.01):
    """
    Rprop optimizer.
    See http://sci2s.ugr.es/keel/pdf/algorithm/articulo/2003-Neuro-Igel-IRprop+.pdf.
    """
    for param, grad in zip(params, gradients):
        grad_tm1 = theano.shared(np.zeros_like(param.get_value()), name=param.name + '_grad')
        step_tm1 = theano.shared(np.zeros_like(param.get_value()) + learning_rate, name=param.name+ '_step')

        test = grad * grad_tm1
        same = T.gt(test, 0)
        diff = T.lt(test, 0)
        step = T.minimum(rprop_max_step, T.maximum(rprop_min_step, step_tm1 * (
            T.eq(test, 0) +
            same * rprop_increase +
            diff * rprop_decrease)))
        grad = grad - diff * grad
        yield param, param - T.sgn(grad) * step
        yield grad_tm1, grad
        yield step_tm1, step 
開發者ID:zomux,項目名稱:deepy,代碼行數:23,代碼來源:rprop.py

示例3: select_finite_faults

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import lt [as 別名]
def select_finite_faults(self):
        fault_points = T.vertical_stack(T.stack([self.ref_layer_points[0]], axis=0), self.rest_layer_points).T
        ctr = T.mean(fault_points, axis=1)
        x = fault_points - ctr.reshape((-1, 1))
        M = T.dot(x, x.T)
        U = T.nlinalg.svd(M)[2]
        rotated_x = T.dot(self.x_to_interpolate(), U)
        rotated_fault_points = T.dot(fault_points.T, U)
        rotated_ctr = T.mean(rotated_fault_points, axis=0)
        a_radius = (rotated_fault_points[:, 0].max() - rotated_fault_points[:, 0].min()) / 2 + self.inf_factor[
            self.n_surface_op[0] - 1]
        b_radius = (rotated_fault_points[:, 1].max() - rotated_fault_points[:, 1].min()) / 2 + self.inf_factor[
            self.n_surface_op[0] - 1]
        sel = T.lt((rotated_x[:, 0] - rotated_ctr[0]) ** 2 / a_radius ** 2 + (
                    rotated_x[:, 1] - rotated_ctr[1]) ** 2 / b_radius ** 2,
                   1)

        if "select_finite_faults" in self.verbose:
            sel = theano.printing.Print("scalar_field_iter")(sel)

        return sel 
開發者ID:cgre-aachen,項目名稱:gempy,代碼行數:23,代碼來源:theano_export.py

示例4: lesser

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import lt [as 別名]
def lesser(x, y):
    return T.lt(x, y) 
開發者ID:lingluodlut,項目名稱:Att-ChemdNER,代碼行數:4,代碼來源:theano_backend.py

示例5: test_ifelse

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import lt [as 別名]
def test_ifelse(self):
        config1 = theano.config.profile
        config2 = theano.config.profile_memory

        try:
            theano.config.profile = True
            theano.config.profile_memory = True

            a, b = T.scalars('a', 'b')
            x, y = T.scalars('x', 'y')

            z = ifelse(T.lt(a, b), x * 2, y * 2)

            p = theano.ProfileStats(False)

            if theano.config.mode in ["DebugMode", "DEBUG_MODE", "FAST_COMPILE"]:
                m = "FAST_RUN"
            else:
                m = None

            f_ifelse = theano.function([a, b, x, y], z, profile=p, name="test_ifelse",
                                       mode=m)

            val1 = 0.
            val2 = 1.
            big_mat1 = 10
            big_mat2 = 11

            f_ifelse(val1, val2, big_mat1, big_mat2)

        finally:
            theano.config.profile = config1
            theano.config.profile_memory = config2 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:35,代碼來源:test_profiling.py

示例6: test_elemwise_composite_float64

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import lt [as 別名]
def test_elemwise_composite_float64():
    # test that we don't fuse composite elemwise with float64 somewhere inside
    # nvcc by default downcast them to float32. We would need to tell him not
    # to do so, but that possible only on some device.
    a = tensor.fmatrix()
    b = tensor.fmatrix()
    av = theano._asarray(numpy.random.rand(4, 4), dtype='float32')
    bv = numpy.ones((4, 4), dtype='float32')

    def get_all_basic_scalar(composite_op):
        l = []
        for i in composite_op.fgraph.toposort():
            if isinstance(i, theano.scalar.Composite):
                l += get_all_basic_scalar(i)
            else:
                l.append(i)
        return l
    for mode in [mode_with_gpu, mode_with_gpu.excluding('gpu_after_fusion'),
                 mode_with_gpu.excluding('elemwise_fusion')]:
        f = pfunc([a, b],
                  tensor.cast(tensor.lt(tensor.cast(a, 'float64') ** 2,
                                               b),
                                     'float32'), mode=mode)

        out = f(av, bv)
        assert numpy.all(out == ((av ** 2) < bv))
        for node in f.maker.fgraph.toposort():
            if isinstance(node.op, cuda.GpuElemwise):
                if isinstance(node.op.scalar_op, theano.scalar.Composite):
                    scals = get_all_basic_scalar(node.op.scalar_op)
                    for s in scals:
                        assert not any([i.type.dtype == 'float64'
                                        for i in s.inputs + s.outputs]) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:35,代碼來源:test_basic_ops.py

示例7: gradient_clipping

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import lt [as 別名]
def gradient_clipping(grads, tparams, clip_c=10):
    g2 = 0.
    for g in grads:
        g2 += (g**2).sum()

    g2 = tensor.sqrt(g2)
    not_finite = tensor.or_(tensor.isnan(g2), tensor.isinf(g2))
    new_grads = []

    for p, g in zip(tparams.values(), grads):
        new_grads.append(tensor.switch(g2 > clip_c,
                                       g * (clip_c / g2),
                                       g))

    return new_grads, not_finite, tensor.lt(clip_c, g2) 
開發者ID:nyu-dl,項目名稱:dl4mt-c2c,代碼行數:17,代碼來源:mixer.py

示例8: less

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import lt [as 別名]
def less(x, y):
    return T.lt(x, y) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:4,代碼來源:theano_backend.py

示例9: add_exploration

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import lt [as 別名]
def add_exploration(recognizer, data, train_conf):

    prediction = None
    prediction_mask = None
    explore_conf = train_conf.get('exploration', 'imitative')
    if explore_conf in ['greedy', 'mixed']:
        length_expand = 10
        prediction = recognizer.get_generate_graph(
            n_steps=recognizer.labels.shape[0] + length_expand)['outputs']
        prediction_mask = tensor.lt(
            tensor.cumsum(tensor.eq(prediction, data.eos_label), axis=0),
            1).astype(floatX)
        prediction_mask = tensor.roll(prediction_mask, 1, 0)
        prediction_mask = tensor.set_subtensor(
            prediction_mask[0, :], tensor.ones_like(prediction_mask[0, :]))

        if explore_conf == 'mixed':
            batch_size = recognizer.labels.shape[1]
            targets = tensor.concatenate([
                recognizer.labels,
                tensor.zeros((length_expand, batch_size), dtype='int64')])

            targets_mask = tensor.concatenate([
                recognizer.labels_mask,
                tensor.zeros((length_expand, batch_size), dtype=floatX)])
            rng = MRG_RandomStreams()
            generate = rng.binomial((batch_size,), p=0.5, dtype='int64')
            prediction = (generate[None, :] * prediction +
                          (1 - generate[None, :]) * targets)
            prediction_mask = (tensor.cast(generate[None, :] *
                                           prediction_mask, floatX) +
                               tensor.cast((1 - generate[None, :]) *
                                           targets_mask, floatX))

        prediction_mask = theano.gradient.disconnected_grad(prediction_mask)
    elif explore_conf != 'imitative':
        raise ValueError

    return prediction, prediction_mask 
開發者ID:rizar,項目名稱:attention-lvcsr,代碼行數:41,代碼來源:main.py

示例10: test_ifelse

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import lt [as 別名]
def test_ifelse(self):
        config1 = theano.config.profile
        config2 = theano.config.profile_memory

        try:
            theano.config.profile = True
            theano.config.profile_memory = True

            a, b = T.scalars('a', 'b')
            x, y = T.scalars('x', 'y')

            z = ifelse(T.lt(a, b), x * 2, y * 2)

            p = theano.ProfileStats(False)

            if theano.config.mode in ["DebugMode", "DEBUG_MODE", "FAST_COMPILE"]:
                m = "FAST_RUN"
            else:
                m = None

            f_ifelse = theano.function([a, b, x, y], z, profile=p, name="test_ifelse",
                                       mode=m)

            val1 = 0.
            val2 = 1.
            big_mat1 = 10
            big_mat2 = 11

            out = f_ifelse(val1, val2, big_mat1, big_mat2)

        finally:
            theano.config.profile = config1
            theano.config.profile_memory = config2 
開發者ID:rizar,項目名稱:attention-lvcsr,代碼行數:35,代碼來源:test_profiling.py

示例11: __init__

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import lt [as 別名]
def __init__(self, inverse_scale=1.0):
        """Constructor.

        Parameters
        ----------
        * `inverse_scale` [float]:
            The inverse scale.
        """
        super(Exponential, self).__init__(inverse_scale=inverse_scale)

        # pdf
        self.pdf_ = T.switch(
            T.lt(self.X, 0.),
            0.,
            self.inverse_scale * T.exp(-self.inverse_scale * self.X)).ravel()
        self._make(self.pdf_, "pdf")

        # -log pdf
        self.nll_ = bound(
            -T.log(self.inverse_scale) + self.inverse_scale * self.X,
            np.inf,
            self.inverse_scale > 0.).ravel()
        self._make(self.nll_, "nll")

        # cdf
        self.cdf_ = (1. - T.exp(-self.inverse_scale * self.X)).ravel()
        self._make(self.cdf_, "cdf")

        # ppf
        self.ppf_ = -T.log(1. - self.p) / self.inverse_scale
        self._make(self.ppf_, "ppf", args=[self.p]) 
開發者ID:diana-hep,項目名稱:carl,代碼行數:33,代碼來源:exponential.py

示例12: __init__

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import lt [as 別名]
def __init__(self, low=0.0, high=1.0):
        """Constructor.

        Parameters
        ----------
        * `low` [float]:
            The lower bound.

        * `high` [float]:
            The upper bound
        """
        super(Uniform, self).__init__(low=low, high=high)

        # pdf
        self.pdf_ = T.switch(
            T.or_(T.lt(self.X, self.low), T.ge(self.X, self.high)),
            0.,
            1. / (self.high - self.low)).ravel()
        self._make(self.pdf_, "pdf")

        # -log pdf
        self.nll_ = T.switch(
            T.or_(T.lt(self.X, self.low), T.ge(self.X, self.high)),
            np.inf,
            T.log(self.high - self.low)).ravel()
        self._make(self.nll_, "nll")

        # cdf
        self.cdf_ = T.switch(
            T.lt(self.X, self.low),
            0.,
            T.switch(
                T.lt(self.X, self.high),
                (self.X - self.low) / (self.high - self.low),
                1.)).ravel()
        self._make(self.cdf_, "cdf")

        # ppf
        self.ppf_ = self.p * (self.high - self.low) + self.low
        self._make(self.ppf_, "ppf", args=[self.p]) 
開發者ID:diana-hep,項目名稱:carl,代碼行數:42,代碼來源:uniform.py

示例13: _get_updates_for

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import lt [as 別名]
def _get_updates_for(self, param, grad):
        grad_tm1 = util.shared_like(param, 'grad')
        step_tm1 = util.shared_like(param, 'step', self.learning_rate.eval())
        test = grad * grad_tm1
        diff = TT.lt(test, 0)
        steps = step_tm1 * (TT.eq(test, 0) +
                            TT.gt(test, 0) * self.step_increase +
                            diff * self.step_decrease)
        step = TT.minimum(self.max_step, TT.maximum(self.min_step, steps))
        grad = grad - diff * grad
        yield param, TT.sgn(grad) * step
        yield grad_tm1, grad
        yield step_tm1, step 
開發者ID:lmjohns3,項目名稱:downhill,代碼行數:15,代碼來源:adaptive.py

示例14: get_output_for

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import lt [as 別名]
def get_output_for(self, input, deterministic=False, **kwargs):
        if deterministic:
            return self.p*input
        else:
            return theano.ifelse.ifelse(
                T.lt(self._srng.uniform( (1,), 0, 1)[0], self.p),
                input,
                T.zeros(input.shape)
            ) 

# def ResDrop(incoming, IB, p):
    # return NL(ESL([IfElseDropLayer(IB,survival_p=p),incoming]),elu) 
開發者ID:ajbrock,項目名稱:Generative-and-Discriminative-Voxel-Modeling,代碼行數:14,代碼來源:ensemble_model3.py

示例15: get_output_for

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import lt [as 別名]
def get_output_for(self, input, deterministic=False, **kwargs):
        if deterministic:
            return self.p*input
        else:
            return theano.ifelse.ifelse(
                T.lt(self._srng.uniform( (1,), 0, 1)[0], self.p),
                input,
                T.zeros(input.shape)
            ) 
開發者ID:ajbrock,項目名稱:Generative-and-Discriminative-Voxel-Modeling,代碼行數:11,代碼來源:ensemble_model1.py


注:本文中的theano.tensor.lt方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。