當前位置: 首頁>>代碼示例>>Python>>正文


Python tensor.lscalar方法代碼示例

本文整理匯總了Python中theano.tensor.lscalar方法的典型用法代碼示例。如果您正苦於以下問題:Python tensor.lscalar方法的具體用法?Python tensor.lscalar怎麽用?Python tensor.lscalar使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在theano.tensor的用法示例。


在下文中一共展示了tensor.lscalar方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_op

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import lscalar [as 別名]
def test_op(self):
        n = tensor.lscalar()
        f = theano.function([self.p, n], multinomial(n, self.p))

        _n = 5
        tested = f(self._p, _n)
        assert tested.shape == self._p.shape
        assert numpy.allclose(numpy.floor(tested.todense()), tested.todense())
        assert tested[2, 1] == _n

        n = tensor.lvector()
        f = theano.function([self.p, n], multinomial(n, self.p))

        _n = numpy.asarray([1, 2, 3, 4], dtype='int64')
        tested = f(self._p, _n)
        assert tested.shape == self._p.shape
        assert numpy.allclose(numpy.floor(tested.todense()), tested.todense())
        assert tested[2, 1] == _n[2] 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:20,代碼來源:test_sp2.py

示例2: test_mixed_shape_bcastable

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import lscalar [as 別名]
def test_mixed_shape_bcastable(self):
        # Test when the provided shape is a tuple of ints and scalar vars
        random = RandomStreams(utt.fetch_seed())
        shape0 = tensor.lscalar()
        shape = (shape0, 1)
        u = random.uniform(size=shape, ndim=2)
        assert u.broadcastable == (False, True)
        f = function([shape0], u)
        assert f(2).shape == (2, 1)
        assert f(8).shape == (8, 1)

        v = random.uniform(size=shape)
        assert v.broadcastable == (False, True)
        g = function([shape0], v)
        assert g(2).shape == (2, 1)
        assert g(8).shape == (8, 1) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:18,代碼來源:test_shared_randomstreams.py

示例3: test_mixed_shape

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import lscalar [as 別名]
def test_mixed_shape(self):
        # Test when the provided shape is a tuple of ints and scalar vars
        rng_R = random_state_type()
        shape0 = tensor.lscalar()
        shape = (shape0, 3)
        post_r, u = uniform(rng_R, size=shape, ndim=2)
        f = compile.function([rng_R, shape0], u)
        rng_state0 = numpy.random.RandomState(utt.fetch_seed())

        assert f(rng_state0, 2).shape == (2, 3)
        assert f(rng_state0, 8).shape == (8, 3)

        post_r, v = uniform(rng_R, size=shape)
        g = compile.function([rng_R, shape0], v)
        assert g(rng_state0, 2).shape == (2, 3)
        assert g(rng_state0, 8).shape == (8, 3) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:18,代碼來源:test_raw_random.py

示例4: test_dtype

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import lscalar [as 別名]
def test_dtype(self):
        rng_R = random_state_type()
        low = tensor.lscalar()
        high = tensor.lscalar()
        post_r, out = random_integers(rng_R, low=low, high=high, size=(20, ),
                                      dtype='int8')
        assert out.dtype == 'int8'
        f = compile.function([rng_R, low, high], [post_r, out])

        rng = numpy.random.RandomState(utt.fetch_seed())
        rng0, val0 = f(rng, 0, 9)
        assert val0.dtype == 'int8'

        rng1, val1 = f(rng0, 255, 257)
        assert val1.dtype == 'int8'
        assert numpy.all(abs(val1) <= 1) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:18,代碼來源:test_raw_random.py

示例5: test_doc

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import lscalar [as 別名]
def test_doc(self):
        """Ensure the code given in pfunc.txt works as expected"""

        # Example #1.
        a = lscalar()
        b = shared(1)
        f1 = pfunc([a], (a + b))
        f2 = pfunc([In(a, value=44)], a + b, updates={b: b + 1})
        self.assertTrue(b.get_value() == 1)
        self.assertTrue(f1(3) == 4)
        self.assertTrue(f2(3) == 4)
        self.assertTrue(b.get_value() == 2)
        self.assertTrue(f1(3) == 5)
        b.set_value(0)
        self.assertTrue(f1(3) == 3)

        # Example #2.
        a = tensor.lscalar()
        b = shared(7)
        f1 = pfunc([a], a + b)
        f2 = pfunc([a], a * b)
        self.assertTrue(f1(5) == 12)
        b.set_value(8)
        self.assertTrue(f1(5) == 13)
        self.assertTrue(f2(4) == 32) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:27,代碼來源:test_pfunc.py

示例6: test_default_updates_expressions

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import lscalar [as 別名]
def test_default_updates_expressions(self):
        x = shared(0)
        y = shared(1)
        a = lscalar('a')

        z = a * x
        x.default_update = x + y

        f1 = pfunc([a], z)
        f1(12)
        assert x.get_value() == 1

        f2 = pfunc([a], z, no_default_updates=True)
        assert f2(7) == 7
        assert x.get_value() == 1

        f3 = pfunc([a], z, no_default_updates=[x])
        assert f3(9) == 9
        assert x.get_value() == 1 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:21,代碼來源:test_pfunc.py

示例7: estimate_lld

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import lscalar [as 別名]
def estimate_lld(model,minibatch,num_sam,size=1):
    n_examples = minibatch.shape[0]
    num_minibatches = n_examples/size
    minibatch = minibatch.astype(np.float32)
    srng = MRG_RandomStreams(seed=132)
    batch = T.fmatrix() 
    index = T.lscalar('i')
    mini = sharedX(minibatch)
    print('num_samples: '+str(num_sam))
    lld = model.log_marginal_likelihood_estimate(batch,num_sam,srng) 

    get_log_marginal_likelihood = theano.function([index], T.sum(lld),givens = {batch:mini[index*size:(index+1)*size]})

    pbar = progressbar.ProgressBar(maxval=num_minibatches).start()
    sum_of_log_likelihoods = 0.
    for i in xrange(num_minibatches):
        summand = get_log_marginal_likelihood(i)
        sum_of_log_likelihoods += summand
        pbar.update(i)
    pbar.finish()

    marginal_log_likelihood = sum_of_log_likelihoods/n_examples
    print("estimate lld: "+str(marginal_log_likelihood)) 
開發者ID:tonywu95,項目名稱:eval_gen,代碼行數:25,代碼來源:utils.py

示例8: build

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import lscalar [as 別名]
def build(self):
        
        # input and output variables
        x = T.matrix('x')
        y = T.matrix('y')
        index = T.lscalar() 
        batch_count = T.lscalar() 
        LR = T.scalar('LR', dtype=theano.config.floatX)
        M = T.scalar('M', dtype=theano.config.floatX)

        # before the build, you work with symbolic variables
        # after the build, you work with numeric variables
        
        self.train_batch = theano.function(inputs=[index,LR,M], updates=self.model.updates(x,y,LR,M),givens={ 
                x: self.shared_x[index * self.batch_size:(index + 1) * self.batch_size], 
                y: self.shared_y[index * self.batch_size:(index + 1) * self.batch_size]},
                name = "train_batch", on_unused_input='warn')
        
        self.test_batch = theano.function(inputs=[index],outputs=self.model.errors(x,y),givens={
                x: self.shared_x[index * self.batch_size:(index + 1) * self.batch_size], 
                y: self.shared_y[index * self.batch_size:(index + 1) * self.batch_size]},
                name = "test_batch")
                
        if self.format == "DFXP" :  
            self.update_range = theano.function(inputs=[batch_count],updates=self.model.range_updates(batch_count), name = "update_range") 
開發者ID:MatthieuCourbariaux,項目名稱:deep-learning-multipliers,代碼行數:27,代碼來源:trainer.py

示例9: get_test_model

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import lscalar [as 別名]
def get_test_model(self, x_data, y_data, aux_data=None, preds_feats=False):
        print('Compiling testing function... ')
        idx = tt.lscalar('test batch index')
        bth_sz = self.tr_prms['BATCH_SZ']

        givens = {
            self.test_x: x_data[idx * bth_sz:(idx + 1) * bth_sz],
            self.y: y_data[idx * bth_sz:(idx + 1) * bth_sz]}

        if hasattr(self, 'aux_inpt_te'):
            assert aux_data is not None, "Auxillary data not supplied"
            givens[self.aux_inpt_te] = \
                aux_data[idx * bth_sz:(idx + 1) * bth_sz]

        outputs = self.te_layers[-1].sym_and_oth_err_rate(self.y)
        if preds_feats:
            outputs += self.te_layers[-1].features_and_predictions()

        return theano.function([idx],
                               outputs,
                               givens=givens) 
開發者ID:rakeshvar,項目名稱:theanet,代碼行數:23,代碼來源:neuralnet.py

示例10: return_activity

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import lscalar [as 別名]
def return_activity(self, train_set_x):
        '''Given an input, this function returns the activity
        value of all the nodes in each hidden layer.'''
        
        activity_each_layer = []
        index = T.lscalar('index')  # index to a sample
        
        for dA in self.dA_layers:
            activity_fn = theano.function(inputs=[index],outputs = dA.output,
                                          givens={self.x: train_set_x[index:(index+1)]})
            activity_each_layer.append(activity_fn)
        return activity_each_layer 
開發者ID:greenelab,項目名稱:adage,代碼行數:14,代碼來源:SdA_train.py

示例11: return_raw_activity

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import lscalar [as 別名]
def return_raw_activity(self, train_set_x):
        '''Given an input, this function returns the raw activity
        value of all the nodes in each layer.'''
        
        raw_activity_each_layer = []
        index = T.lscalar('index')  # index to a sample
        
        for dA in self.dA_layers:
            raw_activity_fn = theano.function(inputs=[index],outputs = dA.raw_output,
                                              givens={self.x: train_set_x[index:(index+1)]})
            raw_activity_each_layer.append(raw_activity_fn)
        return raw_activity_each_layer 
開發者ID:greenelab,項目名稱:adage,代碼行數:14,代碼來源:SdA_train.py

示例12: test_perform

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import lscalar [as 別名]
def test_perform(self):
        x = tensor.lscalar()
        f = function([x], self.op(x))
        M = numpy.random.random_integers(3, 50, size=())
        assert numpy.allclose(f(M), numpy.bartlett(M))
        assert numpy.allclose(f(0), numpy.bartlett(0))
        assert numpy.allclose(f(-1), numpy.bartlett(-1))
        b = numpy.array([17], dtype='uint8')
        assert numpy.allclose(f(b[0]), numpy.bartlett(b[0])) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:11,代碼來源:test_extra_ops.py

示例13: test_infer_shape

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import lscalar [as 別名]
def test_infer_shape(self):
        x = tensor.lscalar()
        self._compile_and_check([x], [self.op(x)],
                                [numpy.random.random_integers(3, 50, size=())],
                                self.op_class)
        self._compile_and_check([x], [self.op(x)], [0], self.op_class)
        self._compile_and_check([x], [self.op(x)], [1], self.op_class) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:9,代碼來源:test_extra_ops.py

示例14: test_simple_2d

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import lscalar [as 別名]
def test_simple_2d(self):
        """Increments or sets part of a tensor by a scalar using full slice and
        a partial slice depending on a scalar.
        """
        a = tt.dmatrix()
        increment = tt.dscalar()
        sl1 = slice(None)
        sl2_end = tt.lscalar()
        sl2 = slice(sl2_end)

        for do_set in [False, True]:

            if do_set:
                resut = tt.set_subtensor(a[sl1, sl2], increment)
            else:
                resut = tt.inc_subtensor(a[sl1, sl2], increment)

            f = theano.function([a, increment, sl2_end], resut)

            val_a = numpy.ones((5, 5))
            val_inc = 2.3
            val_sl2_end = 2

            result = f(val_a, val_inc, val_sl2_end)

            expected_result = numpy.copy(val_a)
            if do_set:
                expected_result[:, :val_sl2_end] = val_inc
            else:
                expected_result[:, :val_sl2_end] += val_inc

            utt.assert_allclose(result, expected_result) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:34,代碼來源:test_inc_subtensor.py

示例15: test_correct_solution

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import lscalar [as 別名]
def test_correct_solution(self):
        x = tensor.lmatrix()
        y = tensor.lmatrix()
        z = tensor.lscalar()
        b = theano.tensor.nlinalg.lstsq()(x, y, z)
        f = function([x, y, z], b)
        TestMatrix1 = numpy.asarray([[2, 1], [3, 4]])
        TestMatrix2 = numpy.asarray([[17, 20], [43, 50]])
        TestScalar = numpy.asarray(1)
        f = function([x, y, z], b)
        m = f(TestMatrix1, TestMatrix2, TestScalar)
        self.assertTrue(numpy.allclose(TestMatrix2, numpy.dot(TestMatrix1, m[0]))) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:14,代碼來源:test_nlinalg.py


注:本文中的theano.tensor.lscalar方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。