當前位置: 首頁>>代碼示例>>Python>>正文


Python tensor.lmatrix方法代碼示例

本文整理匯總了Python中theano.tensor.lmatrix方法的典型用法代碼示例。如果您正苦於以下問題:Python tensor.lmatrix方法的具體用法?Python tensor.lmatrix怎麽用?Python tensor.lmatrix使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在theano.tensor的用法示例。


在下文中一共展示了tensor.lmatrix方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_blocksparse_inplace_gemv_opt

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import lmatrix [as 別名]
def test_blocksparse_inplace_gemv_opt():
    b = tensor.fmatrix()
    W = tensor.ftensor4()
    h = tensor.ftensor3()
    iIdx = tensor.lmatrix()
    oIdx = tensor.lmatrix()

    o = sparse_block_dot(W, h, iIdx, b, oIdx)

    f = theano.function([W, h, iIdx, b, oIdx], o)
    assert hasattr(f.maker.fgraph.outputs[0].tag, 'trace')

    if theano.config.mode == "FAST_COMPILE":
        assert not f.maker.fgraph.toposort()[-1].op.inplace
    else:
        assert f.maker.fgraph.toposort()[-1].op.inplace 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:18,代碼來源:test_opt.py

示例2: test_blocksparse_inplace_outer_opt

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import lmatrix [as 別名]
def test_blocksparse_inplace_outer_opt():
    b = tensor.fmatrix()
    W = tensor.ftensor4()
    h = tensor.ftensor3()
    iIdx = tensor.lmatrix()
    oIdx = tensor.lmatrix()

    o = sparse_block_dot(W, h, iIdx, b, oIdx)

    theano.printing.debugprint(tensor.grad(o.sum(), wrt=W))

    f = theano.function([W, h, iIdx, b, oIdx],
                        [o, tensor.grad(o.sum(), wrt=W)])
    assert hasattr(f.maker.fgraph.outputs[0].tag, 'trace')

    if theano.config.mode == "FAST_COMPILE":
        assert not f.maker.fgraph.toposort()[-1].op.inplace
    else:
        assert f.maker.fgraph.toposort()[-1].op.inplace 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:21,代碼來源:test_opt.py

示例3: test_blocksparse_inplace_outer_opt

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import lmatrix [as 別名]
def test_blocksparse_inplace_outer_opt():
    b = tensor.fmatrix()
    W = tensor.ftensor4()
    h = tensor.ftensor3()
    iIdx = tensor.lmatrix()
    oIdx = tensor.lmatrix()

    o = sparse_block_dot(W, h, iIdx, b, oIdx)

    theano.printing.debugprint(tensor.grad(o.sum(), wrt=W))

    f = theano.function([W, h, iIdx, b, oIdx],
                        [o, tensor.grad(o.sum(), wrt=W)])

    if theano.config.mode == "FAST_COMPILE":
        assert not f.maker.fgraph.toposort()[-1].op.inplace
    else:
        assert f.maker.fgraph.toposort()[-1].op.inplace 
開發者ID:rizar,項目名稱:attention-lvcsr,代碼行數:20,代碼來源:test_opt.py

示例4: test_correct_solution

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import lmatrix [as 別名]
def test_correct_solution(self):
        x = tensor.lmatrix()
        y = tensor.lmatrix()
        z = tensor.lscalar()
        b = theano.tensor.nlinalg.lstsq()(x, y, z)
        f = function([x, y, z], b)
        TestMatrix1 = numpy.asarray([[2, 1], [3, 4]])
        TestMatrix2 = numpy.asarray([[17, 20], [43, 50]])
        TestScalar = numpy.asarray(1)
        f = function([x, y, z], b)
        m = f(TestMatrix1, TestMatrix2, TestScalar)
        self.assertTrue(numpy.allclose(TestMatrix2, numpy.dot(TestMatrix1, m[0]))) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:14,代碼來源:test_nlinalg.py

示例5: multMatVect

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import lmatrix [as 別名]
def multMatVect(v, A, m1, B, m2):
    # TODO : need description for parameter and return
    """
    Multiply the first half of v by A with a modulo of m1 and the second half
    by B with a modulo of m2.

    Notes
    -----
    The parameters of dot_modulo are passed implicitly because passing them
    explicitly takes more time than running the function's C-code.

    """
    if multMatVect.dot_modulo is None:
        A_sym = tensor.lmatrix('A')
        s_sym = tensor.ivector('s')
        m_sym = tensor.iscalar('m')
        A2_sym = tensor.lmatrix('A2')
        s2_sym = tensor.ivector('s2')
        m2_sym = tensor.iscalar('m2')
        o = DotModulo()(A_sym, s_sym, m_sym, A2_sym, s2_sym, m2_sym)
        multMatVect.dot_modulo = function(
            [A_sym, s_sym, m_sym, A2_sym, s2_sym, m2_sym], o, profile=False)

    # This way of calling the Theano fct is done to bypass Theano overhead.
    f = multMatVect.dot_modulo
    f.input_storage[0].storage[0] = A
    f.input_storage[1].storage[0] = v[:3]
    f.input_storage[2].storage[0] = m1
    f.input_storage[3].storage[0] = B
    f.input_storage[4].storage[0] = v[3:]
    f.input_storage[5].storage[0] = m2
    f.fn()
    r = f.output_storage[0].storage[0]

    return r 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:37,代碼來源:rng_mrg.py

示例6: test_blocksparse_gpu_gemv_opt

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import lmatrix [as 別名]
def test_blocksparse_gpu_gemv_opt():
    b = tensor.fmatrix()
    W = tensor.ftensor4()
    h = tensor.ftensor3()
    iIdx = tensor.lmatrix()
    oIdx = tensor.lmatrix()

    o = sparse_block_dot(W, h, iIdx, b, oIdx)

    f = theano.function([W, h, iIdx, b, oIdx], o, mode=mode_with_gpu)

    assert sum(1 for n in f.maker.fgraph.apply_nodes
               if isinstance(n.op, GpuSparseBlockGemv)) == 1 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:15,代碼來源:test_opt.py

示例7: test_multMatVect

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import lmatrix [as 別名]
def test_multMatVect():
    A1 = tensor.lmatrix('A1')
    s1 = tensor.ivector('s1')
    m1 = tensor.iscalar('m1')
    A2 = tensor.lmatrix('A2')
    s2 = tensor.ivector('s2')
    m2 = tensor.iscalar('m2')

    g0 = rng_mrg.DotModulo()(A1, s1, m1, A2, s2, m2)
    f0 = theano.function([A1, s1, m1, A2, s2, m2], g0)

    i32max = numpy.iinfo(numpy.int32).max

    A1 = numpy.random.randint(0, i32max, (3, 3)).astype('int64')
    s1 = numpy.random.randint(0, i32max, 3).astype('int32')
    m1 = numpy.asarray(numpy.random.randint(i32max), dtype="int32")
    A2 = numpy.random.randint(0, i32max, (3, 3)).astype('int64')
    s2 = numpy.random.randint(0, i32max, 3).astype('int32')
    m2 = numpy.asarray(numpy.random.randint(i32max), dtype="int32")

    f0.input_storage[0].storage[0] = A1
    f0.input_storage[1].storage[0] = s1
    f0.input_storage[2].storage[0] = m1
    f0.input_storage[3].storage[0] = A2
    f0.input_storage[4].storage[0] = s2
    f0.input_storage[5].storage[0] = m2

    r_a1 = rng_mrg.matVecModM(A1, s1, m1)
    r_a2 = rng_mrg.matVecModM(A2, s2, m2)
    f0.fn()
    r_b = f0.output_storage[0].value

    assert numpy.allclose(r_a1, r_b[:3])
    assert numpy.allclose(r_a2, r_b[3:]) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:36,代碼來源:test_rng_mrg.py

示例8: __init__

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import lmatrix [as 別名]
def __init__(self, dim, **kwargs):
        super(LookupBottom, self).__init__(**kwargs)
        self.dim = dim

        self.mask = tensor.matrix('inputs_mask')
        self.batch_inputs = {
            'inputs': tensor.lmatrix('inputs')}
        self.single_inputs = {
            'inputs': tensor.lvector('inputs')}

        self.children = [LookupTable(self.input_num_chars['inputs'], self.dim)] 
開發者ID:rizar,項目名稱:attention-lvcsr,代碼行數:13,代碼來源:recognizer.py

示例9: test_blocksparse_inplace_gemv_opt

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import lmatrix [as 別名]
def test_blocksparse_inplace_gemv_opt():
    b = tensor.fmatrix()
    W = tensor.ftensor4()
    h = tensor.ftensor3()
    iIdx = tensor.lmatrix()
    oIdx = tensor.lmatrix()

    o = sparse_block_dot(W, h, iIdx, b, oIdx)

    f = theano.function([W, h, iIdx, b, oIdx], o)

    if theano.config.mode == "FAST_COMPILE":
        assert not f.maker.fgraph.toposort()[-1].op.inplace
    else:
        assert f.maker.fgraph.toposort()[-1].op.inplace 
開發者ID:rizar,項目名稱:attention-lvcsr,代碼行數:17,代碼來源:test_opt.py

示例10: multMatVect

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import lmatrix [as 別名]
def multMatVect(v, A, m1, B, m2):
    """
    Multiply the first half of v by A with a modulo of m1 and the second half
    by B with a modulo of m2.

    Notes
    -----
    The parameters of dot_modulo are passed implicitly because passing them
    explicitly takes more time than running the function's C-code.

    """
    if multMatVect.dot_modulo is None:
        A_sym = tensor.lmatrix('A')
        s_sym = tensor.ivector('s')
        m_sym = tensor.iscalar('m')
        A2_sym = tensor.lmatrix('A2')
        s2_sym = tensor.ivector('s2')
        m2_sym = tensor.iscalar('m2')
        o = DotModulo()(A_sym, s_sym, m_sym, A2_sym, s2_sym, m2_sym)
        multMatVect.dot_modulo = function(
            [A_sym, s_sym, m_sym, A2_sym, s2_sym, m2_sym], o, profile=False)

    # This way of calling the Theano fct is done to bypass Theano overhead.
    f = multMatVect.dot_modulo
    f.input_storage[0].storage[0] = A
    f.input_storage[1].storage[0] = v[:3]
    f.input_storage[2].storage[0] = m1
    f.input_storage[3].storage[0] = B
    f.input_storage[4].storage[0] = v[3:]
    f.input_storage[5].storage[0] = m2
    f.fn()
    r = f.output_storage[0].storage[0]

    return r 
開發者ID:rizar,項目名稱:attention-lvcsr,代碼行數:36,代碼來源:rng_mrg.py

示例11: test_blocksparse_gpu_outer_opt

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import lmatrix [as 別名]
def test_blocksparse_gpu_outer_opt():
    b = tensor.fmatrix()
    W = tensor.ftensor4()
    h = tensor.ftensor3()
    iIdx = tensor.lmatrix()
    oIdx = tensor.lmatrix()

    o = sparse_block_dot(W, h, iIdx, b, oIdx)

    f = theano.function([W, h, iIdx, b, oIdx], [o, tensor.grad(o.sum(),
                                                               wrt=W)],
                        mode=mode_with_gpu)

    assert isinstance(f.maker.fgraph.toposort()[-2].op, GpuSparseBlockOuter) 
開發者ID:rizar,項目名稱:attention-lvcsr,代碼行數:16,代碼來源:test_opt.py

示例12: test_lookup_table

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import lmatrix [as 別名]
def test_lookup_table():
    lt = LookupTable(5, 3)
    lt.allocate()

    lt.W.set_value(numpy.arange(15).reshape(5, 3).astype(theano.config.floatX))

    x = tensor.lmatrix("x")
    y = lt.apply(x)
    f = theano.function([x], [y])

    x_val = [[1, 2], [0, 3]]
    desired = numpy.array([[[3, 4, 5], [6, 7, 8]], [[0, 1, 2], [9, 10, 11]]],
                          dtype=theano.config.floatX)
    assert_equal(f(x_val)[0], desired)

    # Test get_dim
    assert_equal(lt.get_dim(lt.apply.inputs[0]), 0)
    assert_equal(lt.get_dim(lt.apply.outputs[0]), lt.dim)
    assert_raises(ValueError, lt.get_dim, 'random_name')

    # Test feedforward interface
    assert lt.input_dim == 0
    assert lt.output_dim == 3
    lt.output_dim = 4
    assert lt.output_dim == 4

    def assign_input_dim():
        lt.input_dim = 11
    assert_raises(ValueError, assign_input_dim)
    lt.input_dim = 0 
開發者ID:rizar,項目名稱:attention-lvcsr,代碼行數:32,代碼來源:test_lookup.py

示例13: test_with_extra_dims_cross_entropy_3d

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import lmatrix [as 別名]
def test_with_extra_dims_cross_entropy_3d():
    x = tensor.tensor3('x')
    y = tensor.lmatrix('y')
    brick = SoftmaxWithExtraDims()
    f = theano.function(
        [y, x], [brick.categorical_cross_entropy(y, x, extra_ndim=1)])
    assert_allclose(
        f([[0, 1], [2, 3]],
          [[[1, 2, 1, 2], [1, 2, 3, 4]],
           [[4, 3, 2, 1], [2, 2, 2, 2]]])[0],
        numpy.array([[2.0064, 2.44019],
                     [2.44019, 1.3863]]),
        rtol=1e-5) 
開發者ID:rizar,項目名稱:attention-lvcsr,代碼行數:15,代碼來源:test_wrappers.py

示例14: make_theano_batch

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import lmatrix [as 別名]
def make_theano_batch(self, name=None, dtype=None, batch_size=None):
        if batch_size == 1:
            rval = tensor.lrow(name=name)
        else:
            rval = tensor.lmatrix(name=name)

        if theano.config.compute_test_value != 'off':
            if batch_size == 1:
                n = 1
            else:
                # TODO: try to extract constant scalar value from batch_size
                n = 4
            rval.tag.test_value = self.get_origin_batch(batch_size=n,
                                                        dtype=dtype)
        return rval 
開發者ID:zchengquan,項目名稱:TextDetector,代碼行數:17,代碼來源:__init__.py

示例15: Xtest_blocksparse_grad_merge

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import lmatrix [as 別名]
def Xtest_blocksparse_grad_merge(self):
        b = tensor.fmatrix()
        h = tensor.ftensor3()
        iIdx = tensor.lmatrix()
        oIdx = tensor.lmatrix()

        W_val, h_val, iIdx_val, b_val, oIdx_val = self.gemv_data()
        W = float32_shared_constructor(W_val)

        o = gpu_sparse_block_gemv(b.take(oIdx, axis=0), W, h, iIdx, oIdx)
        gW = theano.grad(o.sum(), W)

        lr = numpy.asarray(0.05, dtype='float32')

        upd = W - lr * gW

        f1 = theano.function([h, iIdx, b, oIdx], updates=[(W, upd)],
                             mode=mode_with_gpu)

        # Make sure the lr update was merged.
        assert isinstance(f1.maker.fgraph.outputs[0].owner.op,
                          GpuSparseBlockOuter)

        # Exclude the merge optimizations.
        mode = mode_with_gpu.excluding('local_merge_blocksparse_alpha')
        mode = mode.excluding('local_merge_blocksparse_output')

        f2 = theano.function([h, iIdx, b, oIdx], updates=[(W, upd)], mode=mode)

        # Make sure the lr update is not merged.
        assert not isinstance(f2.maker.fgraph.outputs[0].owner.op,
                              GpuSparseBlockOuter)

        f2(h_val, iIdx_val, b_val, oIdx_val)
        W_ref = W.get_value()

        # reset the var
        W.set_value(W_val)
        f1(h_val, iIdx_val, b_val, oIdx_val)
        W_opt = W.get_value()

        utt.assert_allclose(W_ref, W_opt) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:44,代碼來源:test_blocksparse.py


注:本文中的theano.tensor.lmatrix方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。