當前位置: 首頁>>代碼示例>>Python>>正文


Python tensor.ivector方法代碼示例

本文整理匯總了Python中theano.tensor.ivector方法的典型用法代碼示例。如果您正苦於以下問題:Python tensor.ivector方法的具體用法?Python tensor.ivector怎麽用?Python tensor.ivector使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在theano.tensor的用法示例。


在下文中一共展示了tensor.ivector方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: setUp

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import ivector [as 別名]
def setUp(self):
        if 'gpu' not in theano.config.device:
            raise RuntimeError("Thin stack only defined for GPU usage")

        self.embedding_dim = self.model_dim = 2
        self.vocab_size = 5
        self.batch_size = 2
        self.num_classes = 2

        self.vs = VariableStore()
        self.compose_network = util.TreeLSTMLayer
        self.embedding_proj = IdentityLayer
        self.skip_embeddings = False

        self.X = T.imatrix("X")
        self.transitions = T.imatrix("transitions")
        self.y = T.ivector("y") 
開發者ID:stanfordnlp,項目名稱:spinn,代碼行數:19,代碼來源:test_stack.py

示例2: test_local_csm_properties_csm

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import ivector [as 別名]
def test_local_csm_properties_csm():
    data = tensor.vector()
    indices, indptr, shape = (tensor.ivector(), tensor.ivector(),
                              tensor.ivector())
    mode = theano.compile.mode.get_default_mode()
    mode = mode.including("specialize", "local_csm_properties_csm")
    for CS, cast in [(sparse.CSC, sp.csc_matrix),
                     (sparse.CSR, sp.csr_matrix)]:
        f = theano.function([data, indices, indptr, shape],
                            sparse.csm_properties(
                                CS(data, indices, indptr, shape)),
                            mode=mode)
        assert not any(
            isinstance(node.op, (sparse.CSM, sparse.CSMProperties))
            for node in f.maker.fgraph.toposort())
        v = cast(random_lil((10, 40),
                            config.floatX, 3))
        f(v.data, v.indices, v.indptr, v.shape) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:20,代碼來源:test_opt.py

示例3: test_local_csm_grad_c

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import ivector [as 別名]
def test_local_csm_grad_c():
    raise SkipTest("Opt disabled as it don't support unsorted indices")
    if not theano.config.cxx:
        raise SkipTest("G++ not available, so we need to skip this test.")
    data = tensor.vector()
    indices, indptr, shape = (tensor.ivector(), tensor.ivector(),
                              tensor.ivector())
    mode = theano.compile.mode.get_default_mode()

    if theano.config.mode == 'FAST_COMPILE':
        mode = theano.compile.Mode(linker='c|py', optimizer='fast_compile')

    mode = mode.including("specialize", "local_csm_grad_c")
    for CS, cast in [(sparse.CSC, sp.csc_matrix), (sparse.CSR, sp.csr_matrix)]:
        cost = tensor.sum(sparse.DenseFromSparse()(CS(data, indices, indptr, shape)))
        f = theano.function(
            [data, indices, indptr, shape],
            tensor.grad(cost, data),
            mode=mode)
        assert not any(isinstance(node.op, sparse.CSMGrad) for node
                       in f.maker.fgraph.toposort())
        v = cast(random_lil((10, 40),
                            config.floatX, 3))
        f(v.data, v.indices, v.indptr, v.shape) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:26,代碼來源:test_opt.py

示例4: test_csm_grad

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import ivector [as 別名]
def test_csm_grad(self):
        for sparsetype in ('csr', 'csc'):
            x = tensor.vector()
            y = tensor.ivector()
            z = tensor.ivector()
            s = tensor.ivector()
            call = getattr(sp, sparsetype + '_matrix')
            spm = call(random_lil((300, 400), config.floatX, 5))
            out = tensor.grad(dense_from_sparse(
                CSM(sparsetype)(x, y, z, s)
            ).sum(), x)
            self._compile_and_check([x, y, z, s],
                                    [out],
                                    [spm.data, spm.indices, spm.indptr,
                                     spm.shape],
                                    (CSMGrad, CSMGradC)
                                   ) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:19,代碼來源:test_basic.py

示例5: test_csm_unsorted

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import ivector [as 別名]
def test_csm_unsorted(self):
        """
        Test support for gradients of unsorted inputs.
        """
        sp_types = {'csc': sp.csc_matrix,
                    'csr': sp.csr_matrix}

        for format in ['csr', 'csc', ]:
            for dtype in ['float32', 'float64']:
                x = tensor.tensor(dtype=dtype, broadcastable=(False,))
                y = tensor.ivector()
                z = tensor.ivector()
                s = tensor.ivector()
                # Sparse advanced indexing produces unsorted sparse matrices
                a = sparse_random_inputs(format, (4, 3), out_dtype=dtype,
                                         unsorted_indices=True)[1][0]
                # Make sure it's unsorted
                assert not a.has_sorted_indices
                def my_op(x):
                    y = tensor.constant(a.indices)
                    z = tensor.constant(a.indptr)
                    s = tensor.constant(a.shape)
                    return tensor.sum(
                        dense_from_sparse(CSM(format)(x, y, z, s) * a))
                verify_grad_sparse(my_op, [a.data]) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:27,代碼來源:test_basic.py

示例6: test_csm

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import ivector [as 別名]
def test_csm(self):
        sp_types = {'csc': sp.csc_matrix,
                    'csr': sp.csr_matrix}

        for format in ['csc', 'csr']:
            for dtype in ['float32', 'float64']:
                x = tensor.tensor(dtype=dtype, broadcastable=(False,))
                y = tensor.ivector()
                z = tensor.ivector()
                s = tensor.ivector()
                f = theano.function([x, y, z, s], CSM(format)(x, y, z, s))

                spmat = sp_types[format](random_lil((4, 3), dtype, 3))

                res = f(spmat.data, spmat.indices, spmat.indptr,
                        numpy.asarray(spmat.shape, 'int32'))

                assert numpy.all(res.data == spmat.data)
                assert numpy.all(res.indices == spmat.indices)
                assert numpy.all(res.indptr == spmat.indptr)
                assert numpy.all(res.shape == spmat.shape) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:23,代碼來源:test_basic.py

示例7: __init__

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import ivector [as 別名]
def __init__(self, seq_len, n_feature):
        import theano.tensor as T
        self.Input = lasagne.layers.InputLayer(shape=(None, seq_len, n_feature))
        self.buildNetwork()
        self.output = lasagne.layers.get_output(self.network)
        self.params = lasagne.layers.get_all_params(self.network, trainable=True)
        self.output_fn = theano.function([self.Input.input_var], self.output)

        fx = T.fvector().astype("float64")
        choices = T.ivector()
        px = self.output[T.arange(self.output.shape[0]), choices]
        log_px = T.log(px)
        cost = -fx.dot(log_px)
        updates = lasagne.updates.adagrad(cost, self.params, 0.0008)
        Input = lasagne.layers.InputLayer(shape=(None, seq_len, n_feature))
        self.train_fn = theano.function([self.Input.input_var, choices, fx], [cost, px, log_px], updates=updates) 
開發者ID:doncat99,項目名稱:StockRecommendSystem,代碼行數:18,代碼來源:agent.py

示例8: __init__

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import ivector [as 別名]
def __init__(self, layers, mini_batch_size):
        """Takes a list of `layers`, describing the network architecture, and
        a value for the `mini_batch_size` to be used during training
        by stochastic gradient descent.

        """
        self.layers = layers
        self.mini_batch_size = mini_batch_size
        self.params = [param for layer in self.layers for param in layer.params]
        self.x = T.matrix("x")
        self.y = T.ivector("y")
        init_layer = self.layers[0]
        init_layer.set_inpt(self.x, self.x, self.mini_batch_size)
        for j in xrange(1, len(self.layers)):
            prev_layer, layer  = self.layers[j-1], self.layers[j]
            layer.set_inpt(
                prev_layer.output, prev_layer.output_dropout, self.mini_batch_size)
        self.output = self.layers[-1].output
        self.output_dropout = self.layers[-1].output_dropout 
開發者ID:dalmia,項目名稱:WannaPark,代碼行數:21,代碼來源:network3.py

示例9: __init__

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import ivector [as 別名]
def __init__(self):
        metric_names = ['Loss','L2','Accuracy']
        super(Fr3dNetTrainer, self).__init__(metric_names)

        tensor5 = T.TensorType(theano.config.floatX, (False,) * 5)
        input_var = tensor5('inputs')
        target_var = T.ivector('targets')

        logging.info("Defining network")
        net = fr3dnet.define_network(input_var)
        self.network = net
        train_fn, val_fn, l_r = fr3dnet.define_updates(net, input_var, target_var)

        self.train_fn = train_fn
        self.val_fn = val_fn
        self.l_r = l_r 
開發者ID:gzuidhof,項目名稱:luna16,代碼行數:18,代碼來源:fr3dnet_trainer.py

示例10: __init__

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import ivector [as 別名]
def __init__(self, id, data, hp):
        self.type = 'LM'
        self.id = id
        self.filename = 'savedmodels\model_'+id+'.pkl'
        self.hp = hp

        self.X = T.imatrix()
        self.Y = T.ivector()
        self.seed_idx = T.iscalar()

        self.X.tag.test_value = np.random.randn(hp.seq_size, hp.batch_size).astype(dtype=np.int32)

        self.data = copy.copy(data)
        for key in ('tr_X', 'va_X', 'te_X', 'tr_Y', 'va_Y', 'te_Y'):
            if key in self.data:
                self.data['len_'+key] = len(self.data[key])
                self.data[key] = shared(self.data[key], borrow=True, dtype=np.int32)
        
        if hp['debug']:
            theano.config.optimizer = 'None'
            theano.config.compute_test_value = 'ignore'
            theano.config.exception_verbosity = 'high' 
開發者ID:Ivaylo-Popov,項目名稱:Theano-Lights,代碼行數:24,代碼來源:modelbase.py

示例11: test_givens

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import ivector [as 別名]
def test_givens(self):
        x = shared(0)
        assign = pfunc([], x, givens={x: 3})
        assert assign() == 3
        assert x.get_value(borrow=True) == 0

        y = tensor.ivector()
        f = pfunc([y], (y * x), givens={x: 6})
        assert numpy.all(f([1, 1, 1]) == [6, 6, 6])
        assert x.get_value() == 0

        z = tensor.ivector()
        c = z * y
        f = pfunc([y], (c + 7),
                givens={z: theano._asarray([4, 4, 4], dtype='int32')})
        assert numpy.all(f([1, 1, 1]) == [11, 11, 11])
        assert x.get_value() == 0 
開發者ID:rizar,項目名稱:attention-lvcsr,代碼行數:19,代碼來源:test_pfunc.py

示例12: get_SGD_trainer

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import ivector [as 別名]
def get_SGD_trainer(self):
        """ Returns a plain SGD minibatch trainer with learning rate as param. """
        batch_x = T.fmatrix('batch_x')
        batch_y = T.ivector('batch_y')
        learning_rate = T.fscalar('lr')  # learning rate
        gparams = T.grad(self.mean_cost, self.params)  # all the gradients
        updates = OrderedDict()
        for param, gparam in zip(self.params, gparams):
            updates[param] = param - gparam * learning_rate

        train_fn = theano.function(inputs=[theano.Param(batch_x),
                                           theano.Param(batch_y),
                                           theano.Param(learning_rate)],
                                   outputs=self.mean_cost,
                                   updates=updates,
                                   givens={self.x: batch_x, self.y: batch_y})

        return train_fn 
開發者ID:syhw,項目名稱:DL4H,代碼行數:20,代碼來源:dnn.py

示例13: get_adagrad_trainer

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import ivector [as 別名]
def get_adagrad_trainer(self):
        """ Returns an Adagrad (Duchi et al. 2010) trainer using a learning rate.
        """
        batch_x = T.fmatrix('batch_x')
        batch_y = T.ivector('batch_y')
        learning_rate = T.fscalar('lr')  # learning rate
        gparams = T.grad(self.mean_cost, self.params)  # all the gradients
        updates = OrderedDict()
        for accugrad, param, gparam in zip(self._accugrads, self.params, gparams):
            # c.f. Algorithm 1 in the Adadelta paper (Zeiler 2012)
            agrad = accugrad + gparam * gparam
            dx = - (learning_rate / T.sqrt(agrad + self._eps)) * gparam
            updates[param] = param + dx
            updates[accugrad] = agrad

        train_fn = theano.function(inputs=[theano.Param(batch_x), 
            theano.Param(batch_y),
            theano.Param(learning_rate)],
            outputs=self.mean_cost,
            updates=updates,
            givens={self.x: batch_x, self.y: batch_y})

        return train_fn 
開發者ID:syhw,項目名稱:DL4H,代碼行數:25,代碼來源:dnn.py

示例14: get_adadelta_trainer

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import ivector [as 別名]
def get_adadelta_trainer(self):
        """ Returns an Adadelta (Zeiler 2012) trainer using self._rho and
        self._eps params. """
        batch_x = T.fmatrix('batch_x')
        batch_y = T.ivector('batch_y')
        gparams = T.grad(self.mean_cost, self.params)
        updates = OrderedDict()
        for accugrad, accudelta, param, gparam in zip(self._accugrads,
                self._accudeltas, self.params, gparams):
            # c.f. Algorithm 1 in the Adadelta paper (Zeiler 2012)
            agrad = self._rho * accugrad + (1 - self._rho) * gparam * gparam
            dx = - T.sqrt((accudelta + self._eps)
                          / (agrad + self._eps)) * gparam
            updates[accudelta] = (self._rho * accudelta
                                  + (1 - self._rho) * dx * dx)
            updates[param] = param + dx
            updates[accugrad] = agrad

        train_fn = theano.function(inputs=[theano.Param(batch_x),
                                           theano.Param(batch_y)],
                                   outputs=self.mean_cost,
                                   updates=updates,
                                   givens={self.x: batch_x, self.y: batch_y})

        return train_fn 
開發者ID:syhw,項目名稱:DL4H,代碼行數:27,代碼來源:dnn.py

示例15: __init__

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import ivector [as 別名]
def __init__(self,dataset,dictionary_size=50000,embedding_size=50,skip_window=5,learning_rate=0.1,negative_sampling=25):
        self.ds = dictionary_size
        self.es = embedding_size
        self.sw = skip_window
        self.lr = learning_rate
        self.ns = negative_sampling
        self._tokenize(dataset)
        
        #nn architecture
        self.input = T.matrix()
        self.w1 = theano.shared((np.random.rand(self.ds,self.es).astype(theano.config.floatX)-0.5),borrow=True)
        self.activeidx = T.ivector()
        self.activew1 = T.take(self.w1, self.activeidx, axis=0)
        self.l1out = T.dot(self.input,self.activew1)
        self.w2 = theano.shared((np.random.rand(self.es,self.ds).astype(theano.config.floatX)-0.5),borrow=True)
        self.sampidx = T.ivector()
        self.sampw2 = T.take(self.w2, self.sampidx, axis=1)
        self.l2out = T.nnet.softmax(T.dot(self.l1out,self.sampw2))
        self.target = T.matrix()
       
        #nn functions
        self.z = (self.l2out - self.target).T
        self.w1update = T.set_subtensor(self.w1[self.activeidx,:], self.w1[self.activeidx,:] - T.dot(self.sampw2, self.z).flatten()*self.lr)
        self.w2update = T.set_subtensor(self.w2[:,self.sampidx], self.w2[:,self.sampidx] - T.outer(self.z, self.l1out).T*self.lr)
        self.propogate = theano.function([self.input,self.target,self.activeidx,self.sampidx],\
            updates = [(self.w1,self.w1update),(self.w2,self.w2update)],allow_input_downcast=True) 
開發者ID:iamshang1,項目名稱:Projects,代碼行數:28,代碼來源:cbow_theano.py


注:本文中的theano.tensor.ivector方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。