本文整理匯總了Python中theano.tensor.iscalar方法的典型用法代碼示例。如果您正苦於以下問題:Python tensor.iscalar方法的具體用法?Python tensor.iscalar怎麽用?Python tensor.iscalar使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類theano.tensor
的用法示例。
在下文中一共展示了tensor.iscalar方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __getitem__
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import iscalar [as 別名]
def __getitem__(self, args):
if not isinstance(args, tuple):
args = args,
if len(args) == 2:
scalar_arg_1 = (numpy.isscalar(args[0]) or
getattr(args[0], 'type', None) == tensor.iscalar)
scalar_arg_2 = (numpy.isscalar(args[1]) or
getattr(args[1], 'type', None) == tensor.iscalar)
if scalar_arg_1 and scalar_arg_2:
ret = get_item_scalar(self, args)
elif isinstance(args[0], list):
ret = get_item_2lists(self, args[0], args[1])
else:
ret = get_item_2d(self, args)
elif isinstance(args[0], list):
ret = get_item_list(self, args[0])
else:
ret = get_item_2d(self, args)
return ret
示例2: test_perform
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import iscalar [as 別名]
def test_perform(self):
x = tensor.matrix()
y = tensor.scalar()
z = tensor.iscalar()
f = function([x, y, z], fill_diagonal_offset(x, y, z))
for test_offset in (-5, -4, -1, 0, 1, 4, 5):
for shp in [(8, 8), (5, 8), (8, 5), (5, 5)]:
a = numpy.random.rand(*shp).astype(config.floatX)
val = numpy.cast[config.floatX](numpy.random.rand())
out = f(a, val, test_offset)
# We can't use numpy.fill_diagonal as it is bugged.
assert numpy.allclose(numpy.diag(out, test_offset), val)
if test_offset >= 0:
assert (out == val).sum() == min( min(a.shape),
a.shape[1]-test_offset )
else:
assert (out == val).sum() == min( min(a.shape),
a.shape[0]+test_offset )
示例3: test_infer_shape
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import iscalar [as 別名]
def test_infer_shape(self):
a = tensor.dvector()
self._compile_and_check([a], [self.op(a, 16, 0)],
[numpy.random.rand(12)],
self.op_class)
a = tensor.dmatrix()
for var in [self.op(a, 16, 1), self.op(a, None, 1),
self.op(a, 16, None), self.op(a, None, None)]:
self._compile_and_check([a], [var],
[numpy.random.rand(12, 4)],
self.op_class)
b = tensor.iscalar()
for var in [self.op(a, 16, b), self.op(a, None, b)]:
self._compile_and_check([a, b], [var],
[numpy.random.rand(12, 4), 0],
self.op_class)
示例4: test_shape_i_scalar
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import iscalar [as 別名]
def test_shape_i_scalar(self):
# Each axis is treated independently by shape_i/shape operators
mode_opt = self.mode.including("fast_run")
v_data = numpy.array(numpy.arange(5), dtype=self.dtype)
t_data = self.shared(v_data)
start = tensor.iscalar('b')
stop = tensor.iscalar('e')
step = tensor.iscalar('s')
f = self.function([start, stop, step],
t_data[start:stop:step].shape,
mode=mode_opt,
op=self.ops,
N=0)
assert tensor.Subtensor not in [x.op for x in f.maker.
fgraph.toposort()]
for start in [-8, -5, -4, -1, 0, 1, 4, 5, 8]:
for stop in [-8, -5, -4, -1, 0, 1, 4, 5, 8]:
for step in [-3, -1, 2, 5]:
assert numpy.all(f(start, stop, step) ==
v_data[start:stop:step].shape)
示例5: test_slice_canonical_form_0
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import iscalar [as 別名]
def test_slice_canonical_form_0(self):
start = tensor.iscalar('b')
stop = tensor.iscalar('e')
step = tensor.iscalar('s')
length = tensor.iscalar('l')
cnf = get_canonical_form_slice(slice(start, stop, step), length)
f = self.function([start, stop, step, length], [
tensor.as_tensor_variable(cnf[0].start),
tensor.as_tensor_variable(cnf[0].stop),
tensor.as_tensor_variable(cnf[0].step),
tensor.as_tensor_variable(cnf[1])], N=0, op=self.ops)
length = 5
a = numpy.arange(length)
for start in [-8, -5, -4, -1, 0, 1, 4, 5, 8]:
for stop in [-8, -5, -4, -1, 0, 1, 4, 5, 8]:
for step in [-6, -3, -1, 2, 5]:
out = f(start, stop, step, length)
t_out = a[out[0]:out[1]:out[2]][::out[3]]
v_out = a[start:stop:step]
assert numpy.all(t_out == v_out)
assert numpy.all(t_out.shape == v_out.shape)
示例6: test_slice_canonical_form_1
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import iscalar [as 別名]
def test_slice_canonical_form_1(self):
stop = tensor.iscalar('e')
step = tensor.iscalar('s')
length = tensor.iscalar('l')
cnf = get_canonical_form_slice(slice(None, stop, step), length)
f = self.function([stop, step, length], [
tensor.as_tensor_variable(cnf[0].start),
tensor.as_tensor_variable(cnf[0].stop),
tensor.as_tensor_variable(cnf[0].step),
tensor.as_tensor_variable(cnf[1])], N=0, op=self.ops)
length = 5
a = numpy.arange(length)
for stop in [-8, -5, -4, -1, 0, 1, 4, 5, 8]:
for step in [-6, -3, -1, 2, 5]:
out = f(stop, step, length)
t_out = a[out[0]:out[1]:out[2]][::out[3]]
v_out = a[:stop:step]
assert numpy.all(t_out == v_out)
assert numpy.all(t_out.shape == v_out.shape)
示例7: test_slice_canonical_form_3
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import iscalar [as 別名]
def test_slice_canonical_form_3(self):
start = tensor.iscalar('b')
stop = tensor.iscalar('e')
length = tensor.iscalar('l')
cnf = get_canonical_form_slice(slice(start, stop, None), length)
f = self.function([start, stop, length], [
tensor.as_tensor_variable(cnf[0].start),
tensor.as_tensor_variable(cnf[0].stop),
tensor.as_tensor_variable(cnf[0].step),
tensor.as_tensor_variable(cnf[1])], N=0, op=self.ops)
length = 5
a = numpy.arange(length)
for start in [-8, -5, -4, -1, 0, 1, 4, 5, 8]:
for stop in [-8, -5, -4, -1, 0, 1, 4, 5, 8]:
out = f(start, stop, length)
t_out = a[out[0]:out[1]:out[2]][::out[3]]
v_out = a[start:stop:None]
assert numpy.all(t_out == v_out)
assert numpy.all(t_out.shape == v_out.shape)
示例8: test_slice_canonical_form_4
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import iscalar [as 別名]
def test_slice_canonical_form_4(self):
step = tensor.iscalar('s')
length = tensor.iscalar('l')
cnf = get_canonical_form_slice(slice(None, None, step), length)
f = self.function([step, length], [
tensor.as_tensor_variable(cnf[0].start),
tensor.as_tensor_variable(cnf[0].stop),
tensor.as_tensor_variable(cnf[0].step),
tensor.as_tensor_variable(cnf[1])], N=0, op=self.ops)
length = 5
a = numpy.arange(length)
for step in [-6, -3, -1, 2, 5]:
out = f(step, length)
t_out = a[out[0]:out[1]:out[2]][::out[3]]
v_out = a[None:None:step]
assert numpy.all(t_out == v_out)
assert numpy.all(t_out.shape == v_out.shape)
示例9: test_slice_canonical_form_5
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import iscalar [as 別名]
def test_slice_canonical_form_5(self):
start = tensor.iscalar('b')
length = tensor.iscalar('l')
cnf = get_canonical_form_slice(slice(start, None, None), length)
f = self.function([start, length], [
tensor.as_tensor_variable(cnf[0].start),
tensor.as_tensor_variable(cnf[0].stop),
tensor.as_tensor_variable(cnf[0].step),
tensor.as_tensor_variable(cnf[1])], N=0, op=self.ops)
length = 5
a = numpy.arange(length)
for start in [-8, -5, -4, -1, 0, 1, 4, 5, 8]:
out = f(start, length)
t_out = a[out[0]:out[1]:out[2]][::out[3]]
v_out = a[start:None:None]
assert numpy.all(t_out == v_out)
assert numpy.all(t_out.shape == v_out.shape)
示例10: test_slice_canonical_form_6
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import iscalar [as 別名]
def test_slice_canonical_form_6(self):
stop = tensor.iscalar('e')
length = tensor.iscalar('l')
cnf = get_canonical_form_slice(slice(None, stop, None), length)
f = self.function([stop, length], [
tensor.as_tensor_variable(cnf[0].start),
tensor.as_tensor_variable(cnf[0].stop),
tensor.as_tensor_variable(cnf[0].step),
tensor.as_tensor_variable(cnf[1])], N=0, op=self.ops)
length = 5
a = numpy.arange(length)
for stop in [-8, -5, -4, -1, 0, 1, 4, 5, 8]:
out = f(stop, length)
t_out = a[out[0]:out[1]:out[2]][::out[3]]
v_out = a[None:stop:None]
assert numpy.all(t_out == v_out)
assert numpy.all(t_out.shape == v_out.shape)
示例11: test_advanced_indexing
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import iscalar [as 別名]
def test_advanced_indexing(self):
# tests advanced indexing in Theano for 2D and 3D tensors
rng = numpy.random.RandomState(utt.seed_rng())
a = rng.uniform(size=(3, 3))
b = theano.shared(a)
i = tensor.iscalar()
j = tensor.iscalar()
z = b[[i, j], :]
f1 = theano.function([i, j], z)
cmd = f1(0, 1) == a[[0, 1], :]
self.assertTrue(cmd.all())
aa = rng.uniform(size=(4, 2, 3))
bb = theano.shared(aa)
k = tensor.iscalar()
z = bb[[i, j, k], :, i:k]
f2 = theano.function([i, j, k], z)
cmd = f2(0, 1, 2) == aa[[0, 1, 2], :, 0:2]
self.assertTrue(cmd.all())
示例12: setUp
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import iscalar [as 別名]
def setUp(self):
super(Test_local_elemwise_alloc, self).setUp()
self.fast_run_mode = mode_with_gpu
# self.vec = tensor.vector('vec', dtype=dtype)
# self.mat = tensor.matrix('mat', dtype=dtype)
# self.tens = tensor.tensor3('tens', dtype=dtype)
# self.alloc_wo_dep = basic_ops.gpu_alloc(self.vec, 2, 2)
# self.alloc_w_dep = basic_ops.gpu_alloc(self.vec, *self.mat.shape)
self.alloc_wo_dep = basic_ops.gpu_alloc(self.vec, 2, 2)
self.alloc_w_dep = basic_ops.gpu_alloc(self.vec, *self.mat.shape)
self.alloc_w_dep_tens = basic_ops.gpu_alloc(
self.vec,
self.tens.shape[0],
self.tens.shape[1]
)
self.tv_wo_dep = basic_ops.gpu_alloc(self.vec, 5, 5)
self.tm_wo_dep = basic_ops.gpu_alloc(self.mat, 5, 5, 5)
self.s = tensor.iscalar('s')
self.tv_w_dep = basic_ops.gpu_alloc(self.vec, self.s, self.s)
self.tm_w_dep = basic_ops.gpu_alloc(self.mat, 5, 5, 5)
self.row = tensor.row(dtype=self.dtype)
self.o = basic_ops.gpu_alloc(self.row, 5, 5)
示例13: test_select_distinct
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import iscalar [as 別名]
def test_select_distinct(self):
"""
Tests that MultinomialWOReplacementFromUniform always selects distinct elements
"""
p = tensor.fmatrix()
u = tensor.fvector()
n = tensor.iscalar()
m = multinomial.MultinomialWOReplacementFromUniform('auto')(p, u, n)
f = function([p, u, n], m, allow_input_downcast=True)
n_elements = 1000
all_indices = range(n_elements)
numpy.random.seed(12345)
for i in [5, 10, 50, 100, 500, n_elements]:
uni = numpy.random.rand(i).astype(config.floatX)
pvals = numpy.random.randint(1, 100, (1, n_elements)).astype(config.floatX)
pvals /= pvals.sum(1)
res = f(pvals, uni, i)
res = numpy.squeeze(res)
assert len(res) == i
assert numpy.all(numpy.in1d(numpy.unique(res), all_indices)), res
示例14: test_fail_select_alot
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import iscalar [as 別名]
def test_fail_select_alot(self):
"""
Tests that MultinomialWOReplacementFromUniform fails when asked to sample more
elements than the actual number of elements
"""
p = tensor.fmatrix()
u = tensor.fvector()
n = tensor.iscalar()
m = multinomial.MultinomialWOReplacementFromUniform('auto')(p, u, n)
f = function([p, u, n], m, allow_input_downcast=True)
n_elements = 100
n_selected = 200
numpy.random.seed(12345)
uni = numpy.random.rand(n_selected).astype(config.floatX)
pvals = numpy.random.randint(1, 100, (1, n_elements)).astype(config.floatX)
pvals /= pvals.sum(1)
self.assertRaises(ValueError, f, pvals, uni, n_selected)
示例15: test_n_samples_2
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import iscalar [as 別名]
def test_n_samples_2():
p = tensor.fmatrix()
u = tensor.fvector()
n = tensor.iscalar()
m = multinomial.MultinomialFromUniform('auto')(p, u, n)
f = function([p, u, n], m, allow_input_downcast=True)
numpy.random.seed(12345)
for i in [1, 5, 10, 100, 1000]:
uni = numpy.random.rand(i).astype(config.floatX)
pvals = numpy.random.randint(1, 1000, (1, 1000)).astype(config.floatX)
pvals /= pvals.sum(1)
res = f(pvals, uni, i)
assert res.sum() == i
for i in [1, 5, 10, 100, 1000]:
uni = numpy.random.rand(i).astype(config.floatX)
pvals = numpy.random.randint(
1, 1000000, (1, 1000000)).astype(config.floatX)
pvals /= pvals.sum(1)
res = f(pvals, uni, i)
assert res.sum() == i