當前位置: 首頁>>代碼示例>>Python>>正文


Python tensor.gt方法代碼示例

本文整理匯總了Python中theano.tensor.gt方法的典型用法代碼示例。如果您正苦於以下問題:Python tensor.gt方法的具體用法?Python tensor.gt怎麽用?Python tensor.gt使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在theano.tensor的用法示例。


在下文中一共展示了tensor.gt方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_pdbbreakpoint_op

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import gt [as 別名]
def test_pdbbreakpoint_op():
    """ Test that PdbBreakpoint ops don't block gpu optimization"""
    b = tensor.fmatrix()

    # Create a function composed of a breakpoint followed by
    # some computation
    condition = tensor.gt(b.sum(), 0)
    b_monitored = PdbBreakpoint(name='TestBreakpoint')(condition, b)
    output = b_monitored ** 2

    f = theano.function([b], output, mode=mode_with_gpu)

    # Ensure that, in the compiled function, the computation following the
    # breakpoint has been moved to the gpu.
    topo = f.maker.fgraph.toposort()
    assert isinstance(topo[-2].op, cuda.GpuElemwise)
    assert topo[-1].op == cuda.host_from_gpu 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:19,代碼來源:test_opt.py

示例2: test_elemwise_comparaison_cast

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import gt [as 別名]
def test_elemwise_comparaison_cast():
    """
    test if an elemwise comparaison followed by a cast to float32 are
    pushed to gpu.
    """

    a = tensor.fmatrix()
    b = tensor.fmatrix()
    av = theano._asarray(numpy.random.rand(4, 4), dtype='float32')
    bv = numpy.ones((4, 4), dtype='float32')

    for g, ans in [(tensor.lt, av < bv), (tensor.gt, av > bv),
                   (tensor.le, av <= bv), (tensor.ge, av >= bv)]:

        f = pfunc([a, b], tensor.cast(g(a, b), 'float32'), mode=mode_with_gpu)

        out = f(av, bv)
        assert numpy.all(out == ans)
        assert any([isinstance(node.op, cuda.GpuElemwise)
                    for node in f.maker.fgraph.toposort()]) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:22,代碼來源:test_basic_ops.py

示例3: test_pdbbreakpoint_op

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import gt [as 別名]
def test_pdbbreakpoint_op():
    """ Test that PdbBreakpoint ops don't block gpu optimization"""
    b = tensor.fmatrix()

    # Create a function composed of a breakpoint followed by
    # some computation
    condition = tensor.gt(b.sum(), 0)
    b_monitored = PdbBreakpoint(name='TestBreakpoint')(condition, b)
    output = b_monitored ** 2

    f = theano.function([b], output, mode=mode_with_gpu)

    # Ensure that, in the compiled function, the computation following the
    # breakpoint has been moved to the gpu.
    topo = f.maker.fgraph.toposort()
    assert isinstance(topo[-2].op, GpuElemwise)
    assert topo[-1].op == host_from_gpu 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:19,代碼來源:test_opt.py

示例4: setUp

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import gt [as 別名]
def setUp(self):

        super(TestPdbBreakpoint, self).setUp()

        # Sample computation that involves tensors with different numbers
        # of dimensions
        self.input1 = T.fmatrix()
        self.input2 = T.fscalar()
        self.output = T.dot((self.input1 - self.input2),
                            (self.input1 - self.input2).transpose())

        # Declare the conditional breakpoint
        self.breakpointOp = PdbBreakpoint("Sum of output too high")
        self.condition = T.gt(self.output.sum(), 1000)
        (self.monitored_input1,
         self.monitored_input2,
         self.monitored_output) = self.breakpointOp(self.condition,
                                                    self.input1,
                                                    self.input2, self.output) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:21,代碼來源:test_breakpoint.py

示例5: relu

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import gt [as 別名]
def relu(x, alpha=0., max_value=None, threshold=0.):
    _assert_has_capability(T.nnet, 'relu')

    if alpha != 0.:
        if threshold != 0.:
            negative_part = T.nnet.relu(-x + threshold)
        else:
            negative_part = T.nnet.relu(-x)

    if threshold != 0.:
        x = x * T.cast(T.gt(x, threshold), floatx())
    else:
        x = T.nnet.relu(x)

    if max_value is not None:
        x = T.clip(x, 0.0, max_value)

    if alpha != 0.:
        x -= alpha * negative_part

    return x 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:23,代碼來源:theano_backend.py

示例6: __init__

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import gt [as 別名]
def __init__(self, input, centerbias = None, alpha=1.0):
        self.input = input
        if centerbias is None:
            centerbias = np.ones(12)
        self.alpha = theano.shared(value = np.array(alpha).astype(theano.config.floatX), name='alpha')
        self.centerbias_ys = theano.shared(value=np.array(centerbias, dtype=theano.config.floatX), name='centerbias_ys')
        self.centerbias_xs = theano.shared(value=np.linspace(0, 1, len(centerbias), dtype=theano.config.floatX), name='centerbias_xs')

        height = T.cast(input.shape[0], theano.config.floatX)
        width = T.cast(input.shape[1], theano.config.floatX)
        x_coords = (T.arange(width) - 0.5*width) / (0.5*width)
        y_coords = (T.arange(height) - 0.5*height) / (0.5*height) + 0.0001  # We cannot have zeros in there because of grad

        x_coords = x_coords.dimshuffle('x', 0)
        y_coords = y_coords.dimshuffle(0, 'x')

        dists = T.sqrt(T.square(x_coords) + self.alpha*T.square(y_coords))
        self.max_dist = T.sqrt(1 + self.alpha)
        self.dists = dists/self.max_dist

        self.factors = nonlinearity(self.dists, self.centerbias_xs, self.centerbias_ys, len(centerbias))

        apply_centerbias = T.gt(self.centerbias_ys.shape[0], 2)
        self.output = ifelse(apply_centerbias, self.input*self.factors, self.input)
        self.params = [self.centerbias_ys, self.alpha] 
開發者ID:matthias-k,項目名稱:pysaliency,代碼行數:27,代碼來源:theano_utils.py

示例7: greater

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import gt [as 別名]
def greater(x, y):
    return T.gt(x, y) 
開發者ID:lingluodlut,項目名稱:Att-ChemdNER,代碼行數:4,代碼來源:theano_backend.py

示例8: build_transition_cost

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import gt [as 別名]
def build_transition_cost(logits, targets, num_transitions):
    """
    Build a parse action prediction cost function.
    """

    # swap seq_length dimension to front so that we can scan per timestep
    logits = T.swapaxes(logits, 0, 1)
    targets = targets.T

    def cost_t(logits, tgt, num_transitions):
        # TODO(jongauthier): Taper down xent cost as we proceed through
        # sequence?
        predicted_dist = T.nnet.softmax(logits)
        cost = T.nnet.categorical_crossentropy(predicted_dist, tgt)

        pred = T.argmax(logits, axis=1)
        error = T.neq(pred, tgt)
        return cost, error

    results, _ = theano.scan(cost_t, [logits, targets], non_sequences=[num_transitions])
    costs, errors = results

    # Create a mask that selects only transitions that involve real data.
    unrolling_length = T.shape(costs)[0]
    padding = unrolling_length - num_transitions
    padding = T.reshape(padding, (1, -1))
    rng = T.arange(unrolling_length) + 1
    rng = T.reshape(rng, (-1, 1))
    mask = T.gt(rng, padding)

    # Compute acc using the mask
    acc = 1.0 - (T.sum(errors * mask, dtype=theano.config.floatX)
                 / T.sum(num_transitions, dtype=theano.config.floatX))

    # Compute cost directly, since we *do* want a cost incentive to get the padding
    # transitions right.
    cost = T.mean(costs)
    return cost, acc 
開發者ID:stanfordnlp,項目名稱:spinn,代碼行數:40,代碼來源:classifier.py

示例9: __init__

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import gt [as 別名]
def __init__(self, x, lower, upper, *args, **kwargs):
        super(Uniform, self).__init__(*args, **kwargs)
        self._logp = T.log(T.switch(
            T.gt(x, upper), 0,
            T.switch(T.lt(x, lower), 0, 1/(upper-lower))
        ))
        self._cdf = T.switch(
            T.gt(x, upper), 1,
            T.switch(T.lt(x, lower), 0, (x-lower)/(upper-lower))
        )
        self._add_expr('x', x)
        self._add_expr('lower', lower)
        self._add_expr('upper', upper) 
開發者ID:ibab,項目名稱:python-mle,代碼行數:15,代碼來源:__init__.py

示例10: errorsBreakdown

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import gt [as 別名]
def errorsBreakdown(self, y):
	
	##truth shall be casted to at least int32
	def breakDown3C(pred=None, truth=None):
	    labelcount = T.bincount(truth, minlength=3)
            err = T.neq(pred, truth)
            truth_with_wrong_pred = truth[err.nonzero()]
	    errcount = T.bincount(truth_with_wrong_pred, minlength=3)

	    ## use 0.0001 to avoid division by 0
            return T.mul(errcount, 1./(labelcount + 0.0001) )

	if self.n_out == 3:
	    truth = T.cast(y, 'int32')
	    return breakDown3C(self.y_pred, truth)

	if self.n_out == 12:
	    ## convert the 12-label system to the 3-label system
	    ## 0, 1, 2, 3 to 0; 4,5,6,7,8,9,10 to 1; and 11 to 2
	    y1 = T.zeros_like(y)
	    y2 = T.gt(y, 3)
	    y3 = T.gt(y, 10)
	    truth = T.cast(y1 + y2 + y3, 'int32')

	    pred1 = T.zeros_like(self.y_pred)
	    pred2 = T.gt(self.y_pred, 3)
	    pred3 = T.gt(self.y_pred, 10)
	    pred = T.cast( y1 + y2 + y3, 'int32')

	    return breakDown3C(pred, truth)
            
	else:
	    print 'this function only works when n_out is either 3 or 12'
	    sys.exit(-1)

    ## calculate the confusion matrix of the prediction 
開發者ID:j3xugit,項目名稱:RaptorX-Contact,代碼行數:38,代碼來源:LogReg.py

示例11: confusionMatrix

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import gt [as 別名]
def confusionMatrix(self, y):

	def confusionMatrix3C(pred=None, truth=None):
	    labelcount = T.bincount(truth, minlength=3)
	    truth_pred = truth * 3 + pred
	    count = T.bincount(truth_pred, minlength=9).reshape((3, 3))
	    count_norm = count /(1. * truth.shape[0] )

	    return count_norm

	if self.n_out == 3:
	    ##truth shall be casted to at least int32
	    truth = T.cast(y, 'int32')
	    return confusionMatrix3C(self.y_pred, truth)

	if self.n_out == 12:
	    ## convert the 12-label system to the 3-label system
	    ## 0, 1, 2, 3 to 0; 4,5,6,7,8,9,10 to 1; and 11 to 2
	    y1 = T.zeros_like(y)
	    y2 = T.gt(y, 3)
	    y3 = T.gt(y, 10)
	    truth = T.cast(y1 + y2 + y3, 'int32')

	    pred1 = T.zeros_like(self.y_pred)
	    pred2 = T.gt(self.y_pred, 3)
	    pred3 = T.gt(self.y_pred, 10)
	    pred = T.cast( y1 + y2 + y3, 'int32')

	    return confusionMatrix3C(pred, truth)
            
	else:
	    print 'this function only works when n_out is either 3 or 12'
	    sys.exit(-1) 
開發者ID:j3xugit,項目名稱:RaptorX-Contact,代碼行數:35,代碼來源:LogReg.py

示例12: _get_updates_for

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import gt [as 別名]
def _get_updates_for(self, param, grad):
        grad_tm1 = util.shared_like(param, 'grad')
        step_tm1 = util.shared_like(param, 'step', self.learning_rate.eval())
        test = grad * grad_tm1
        diff = TT.lt(test, 0)
        steps = step_tm1 * (TT.eq(test, 0) +
                            TT.gt(test, 0) * self.step_increase +
                            diff * self.step_decrease)
        step = TT.minimum(self.max_step, TT.maximum(self.min_step, steps))
        grad = grad - diff * grad
        yield param, TT.sgn(grad) * step
        yield grad_tm1, grad
        yield step_tm1, step 
開發者ID:lmjohns3,項目名稱:downhill,代碼行數:15,代碼來源:adaptive.py

示例13: decay

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import gt [as 別名]
def decay(self):
        updates = []
        new_batch = ifelse(T.gt(self.batch, self.decay_batch), sharedX(0), self.batch+1)
        new_lr = ifelse(T.gt(self.batch, self.decay_batch), self.lr*self.lr_decay_factor, self.lr)
        updates.append((self.batch, new_batch))
        updates.append((self.lr, new_lr))
        return updates 
開發者ID:hycis,項目名稱:Mozi,代碼行數:9,代碼來源:learning_method.py

示例14: pos_ct

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import gt [as 別名]
def pos_ct(y_true, y_pred):
	pos_pred = K.sum(gt((K.clip(y_pred, 0, 1)),0.5))
	return pos_pred 
開發者ID:connorcoley,項目名稱:ASKCOS,代碼行數:5,代碼來源:fastfilter_utilities.py

示例15: true_pos

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import gt [as 別名]
def true_pos(y_true, y_pred):
	true_pos_ct = K.sum(gt((K.clip(y_pred*y_true, 0, 1)),0.5))
	return true_pos_ct 
開發者ID:connorcoley,項目名稱:ASKCOS,代碼行數:5,代碼來源:fastfilter_utilities.py


注:本文中的theano.tensor.gt方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。