本文整理匯總了Python中theano.tensor.ftensor4方法的典型用法代碼示例。如果您正苦於以下問題:Python tensor.ftensor4方法的具體用法?Python tensor.ftensor4怎麽用?Python tensor.ftensor4使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類theano.tensor
的用法示例。
在下文中一共展示了tensor.ftensor4方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_blocksparse_inplace_gemv_opt
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import ftensor4 [as 別名]
def test_blocksparse_inplace_gemv_opt():
b = tensor.fmatrix()
W = tensor.ftensor4()
h = tensor.ftensor3()
iIdx = tensor.lmatrix()
oIdx = tensor.lmatrix()
o = sparse_block_dot(W, h, iIdx, b, oIdx)
f = theano.function([W, h, iIdx, b, oIdx], o)
assert hasattr(f.maker.fgraph.outputs[0].tag, 'trace')
if theano.config.mode == "FAST_COMPILE":
assert not f.maker.fgraph.toposort()[-1].op.inplace
else:
assert f.maker.fgraph.toposort()[-1].op.inplace
示例2: test_blocksparse_inplace_outer_opt
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import ftensor4 [as 別名]
def test_blocksparse_inplace_outer_opt():
b = tensor.fmatrix()
W = tensor.ftensor4()
h = tensor.ftensor3()
iIdx = tensor.lmatrix()
oIdx = tensor.lmatrix()
o = sparse_block_dot(W, h, iIdx, b, oIdx)
theano.printing.debugprint(tensor.grad(o.sum(), wrt=W))
f = theano.function([W, h, iIdx, b, oIdx],
[o, tensor.grad(o.sum(), wrt=W)])
assert hasattr(f.maker.fgraph.outputs[0].tag, 'trace')
if theano.config.mode == "FAST_COMPILE":
assert not f.maker.fgraph.toposort()[-1].op.inplace
else:
assert f.maker.fgraph.toposort()[-1].op.inplace
示例3: test_sparseblockdot
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import ftensor4 [as 別名]
def test_sparseblockdot(self):
"""
Compares the numpy version of sparseblockgemv to sparse_block_dot.
"""
b = tensor.fmatrix()
W = tensor.ftensor4()
h = tensor.ftensor3()
iIdx = tensor.imatrix()
oIdx = tensor.imatrix()
o = sparse_block_dot(W, h, iIdx, b, oIdx)
f = theano.function([W, h, iIdx, b, oIdx], o, mode=self.mode)
W_val, h_val, iIdx_val, b_val, oIdx_val = \
BlockSparse_Gemv_and_Outer.gemv_data()
th_out = f(W_val, h_val, iIdx_val, b_val, oIdx_val)
ref_out = BlockSparse_Gemv_and_Outer.gemv_numpy(
b_val.take(oIdx_val, axis=0), W_val, h_val, iIdx_val, oIdx_val)
utt.assert_allclose(ref_out, th_out)
示例4: test_sparseblockgemv
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import ftensor4 [as 別名]
def test_sparseblockgemv(self):
"""
Compares the numpy and theano versions of sparseblockgemv.
"""
b = tensor.fmatrix()
W = tensor.ftensor4()
h = tensor.ftensor3()
iIdx = tensor.imatrix()
oIdx = tensor.imatrix()
o = self.gemv_op(b.take(oIdx, axis=0), W, h, iIdx, oIdx)
f = theano.function([W, h, iIdx, b, oIdx], o, mode=self.mode)
W_val, h_val, iIdx_val, b_val, oIdx_val = \
BlockSparse_Gemv_and_Outer.gemv_data()
th_out = f(W_val, h_val, iIdx_val, b_val, oIdx_val)
ref_out = BlockSparse_Gemv_and_Outer.gemv_numpy(
b_val.take(oIdx_val, axis=0), W_val, h_val, iIdx_val, oIdx_val)
utt.assert_allclose(ref_out, th_out)
示例5: test_sparseblockouter
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import ftensor4 [as 別名]
def test_sparseblockouter(self):
o = tensor.ftensor4()
x = tensor.ftensor3()
y = tensor.ftensor3()
xIdx = tensor.imatrix()
yIdx = tensor.imatrix()
out = self.outer_op(o, x, y, xIdx, yIdx)
f = theano.function([o, x, y, xIdx, yIdx], out,
on_unused_input="warn", mode=self.mode)
o_val, x_val, y_val, xIdx_val, yIdx_val = \
BlockSparse_Gemv_and_Outer.outer_data()
th_out = f(o_val, x_val, y_val, xIdx_val, yIdx_val)
ref_out = BlockSparse_Gemv_and_Outer.outer_numpy(
o_val, x_val, y_val, xIdx_val, yIdx_val)
utt.assert_allclose(ref_out, th_out)
示例6: test_logical_shapes
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import ftensor4 [as 別名]
def test_logical_shapes(self):
# Logical shapes are not supported anymore, so we check that it
# raises an Exception.
for stride in range(1, 4):
kshp = (10, 2, 10, 10)
featshp = (3, 10, 11, 11)
a = tensor.ftensor4()
A = tensor.ftensor4()
# Need to transpose first two dimensions of kernel, and reverse
# index kernel image dims (for correlation)
kernel_rotated = tensor.transpose(A, axes=[1, 0, 2, 3])
featshp_logical = (featshp[0], featshp[1], featshp[2] * stride,
featshp[3] * stride)
kshp_rotated = (kshp[1], kshp[0], kshp[2], kshp[3])
self.assertRaises(ValueError, tensor.nnet.conv2d,
a, kernel_rotated,
border_mode='full',
image_shape=featshp,
filter_shape=kshp_rotated,
imshp_logical=featshp_logical[1:],
kshp_logical=kshp[2:])
示例7: test_dnn_conv_merge_mouts
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import ftensor4 [as 別名]
def test_dnn_conv_merge_mouts():
# make sure it doesn't attempt to output/alpha merge a convolution
# that has multiple clients.
if not cuda.dnn.dnn_available():
raise SkipTest(cuda.dnn.dnn_available.msg)
img = T.ftensor4()
kern = T.ftensor4()
out = T.ftensor4()
conv = dnn.dnn_conv(img, kern)
lr = numpy.asarray(0.05, dtype='float32')
if cuda.dnn.version() == -1:
# Can't merge alpha with cudnn v1
fr = conv + out
else:
fr = lr * (conv + out)
rr = conv * lr
f = theano.function([img, kern, out], [fr, rr], mode=mode_with_gpu)
convs = [n for n in f.maker.fgraph.toposort()
if isinstance(n.op, dnn.GpuDnnConv)]
assert len(convs) == 1
示例8: test_dnn_conv_merge_broad
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import ftensor4 [as 別名]
def test_dnn_conv_merge_broad():
# Make sure that we don't apply output_merge on broadcasted values.
if not cuda.dnn.dnn_available():
raise SkipTest(cuda.dnn.dnn_available.msg)
img = T.ftensor4()
kern = T.ftensor4()
conv = dnn.dnn_conv(img, kern)
lr = numpy.asarray(0.05, dtype='float32')
# this does broadcasting
fr = conv + lr
f = theano.function([img, kern], [fr])
convs = [n for n in f.maker.fgraph.toposort()
if isinstance(n.op, dnn.GpuDnnConv)]
assert len(convs) == 1
conv = convs[0]
# Assert output was not merged
assert isinstance(conv.inputs[2].owner.op, GpuAllocEmpty)
示例9: check_theano
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import ftensor4 [as 別名]
def check_theano():
"""Checks if theano is installed correctly."""
try:
import theano
import theano.tensor as T
# Check float type.
if theano.config.floatX != "float32":
logging.error("Theano float type must be float32. Add "
"floatX=float32 to your .theanorc.")
else:
logging.info("Theano float is float32.")
# Check if cudnn softmax is available.
try:
from dltools import architectures
architectures.FRRNBuilderBase.log_softmax_4d(T.ftensor4())
logging.info("cuDNN spatial softmax found.")
except:
logging.error("Cannot create cuDNN spatial log softmax. Install "
"cuDNN and make sure that theano uses the GPU.")
except:
logging.error("Cannot import theano.")
示例10: test_blocksparse_inplace_outer_opt
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import ftensor4 [as 別名]
def test_blocksparse_inplace_outer_opt():
b = tensor.fmatrix()
W = tensor.ftensor4()
h = tensor.ftensor3()
iIdx = tensor.lmatrix()
oIdx = tensor.lmatrix()
o = sparse_block_dot(W, h, iIdx, b, oIdx)
theano.printing.debugprint(tensor.grad(o.sum(), wrt=W))
f = theano.function([W, h, iIdx, b, oIdx],
[o, tensor.grad(o.sum(), wrt=W)])
if theano.config.mode == "FAST_COMPILE":
assert not f.maker.fgraph.toposort()[-1].op.inplace
else:
assert f.maker.fgraph.toposort()[-1].op.inplace
示例11: test_default_conv
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import ftensor4 [as 別名]
def test_default_conv():
"""Just test that we introduce the right GPU convolution
version.
"""
img = theano.tensor.ftensor4()
fil = theano.tensor.ftensor4()
c = theano.tensor.nnet.conv2d(img, fil)
f = theano.function([img, fil], c, mode=theano_mode)
if cuda.dnn.dnn_available():
assert any([isinstance(a.op, GpuDnnConv)
for a in f.maker.fgraph.apply_nodes])
else:
assert any([isinstance(a.op, cuda.blas.GpuCorrMM)
for a in f.maker.fgraph.apply_nodes])
示例12: test_sparseblockgemvF
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import ftensor4 [as 別名]
def test_sparseblockgemvF(self):
"""
Test the fortan order for W (which can happen in the grad for some
graphs).
"""
b = tensor.fmatrix()
W = tensor.ftensor4()
h = tensor.ftensor3()
iIdx = tensor.imatrix()
oIdx = tensor.imatrix()
o = self.gemv_op(b.take(oIdx, axis=0),
tensor.DimShuffle((False, False, False, False),
(0, 1, 3, 2))
(tensor.as_tensor_variable(W)),
h, iIdx, oIdx)
f = theano.function([W, h, iIdx, b, oIdx], o, mode=self.mode)
W_val, h_val, iIdx_val, b_val, oIdx_val = \
BlockSparse_Gemv_and_Outer.gemv_data()
th_out = f(numpy.swapaxes(W_val, 2, 3), h_val, iIdx_val, b_val,
oIdx_val)
ref_out = BlockSparse_Gemv_and_Outer.gemv_numpy(
b_val.take(oIdx_val, axis=0), W_val, h_val, iIdx_val, oIdx_val)
utt.assert_allclose(ref_out, th_out)
示例13: test_dot_infershape
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import ftensor4 [as 別名]
def test_dot_infershape(self):
b = tensor.fmatrix()
W = tensor.ftensor4()
h = tensor.ftensor3()
iIdx = tensor.imatrix()
oIdx = tensor.imatrix()
self._compile_and_check([W, h, iIdx, b, oIdx],
[sparse_block_dot(W, h, iIdx, b, oIdx)],
self.gemv_data(),
self.gemv_class)
示例14: test_gemv_infershape
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import ftensor4 [as 別名]
def test_gemv_infershape(self):
b = tensor.fmatrix()
W = tensor.ftensor4()
h = tensor.ftensor3()
iIdx = tensor.imatrix()
oIdx = tensor.imatrix()
self._compile_and_check(
[W, h, iIdx, b, oIdx],
[self.gemv_op(b.take(oIdx, axis=0), W, h, iIdx, oIdx)],
self.gemv_data(),
self.gemv_class)
示例15: test_outer_infershape
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import ftensor4 [as 別名]
def test_outer_infershape(self):
o = tensor.ftensor4()
x = tensor.ftensor3()
y = tensor.ftensor3()
xIdx = tensor.imatrix()
yIdx = tensor.imatrix()
self._compile_and_check([o, x, y, xIdx, yIdx],
[self.outer_op(o, x, y, xIdx, yIdx)],
self.outer_data(),
self.outer_class)