當前位置: 首頁>>代碼示例>>Python>>正文


Python tensor.ftensor3方法代碼示例

本文整理匯總了Python中theano.tensor.ftensor3方法的典型用法代碼示例。如果您正苦於以下問題:Python tensor.ftensor3方法的具體用法?Python tensor.ftensor3怎麽用?Python tensor.ftensor3使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在theano.tensor的用法示例。


在下文中一共展示了tensor.ftensor3方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_blocksparse_inplace_gemv_opt

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import ftensor3 [as 別名]
def test_blocksparse_inplace_gemv_opt():
    b = tensor.fmatrix()
    W = tensor.ftensor4()
    h = tensor.ftensor3()
    iIdx = tensor.lmatrix()
    oIdx = tensor.lmatrix()

    o = sparse_block_dot(W, h, iIdx, b, oIdx)

    f = theano.function([W, h, iIdx, b, oIdx], o)
    assert hasattr(f.maker.fgraph.outputs[0].tag, 'trace')

    if theano.config.mode == "FAST_COMPILE":
        assert not f.maker.fgraph.toposort()[-1].op.inplace
    else:
        assert f.maker.fgraph.toposort()[-1].op.inplace 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:18,代碼來源:test_opt.py

示例2: test_blocksparse_inplace_outer_opt

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import ftensor3 [as 別名]
def test_blocksparse_inplace_outer_opt():
    b = tensor.fmatrix()
    W = tensor.ftensor4()
    h = tensor.ftensor3()
    iIdx = tensor.lmatrix()
    oIdx = tensor.lmatrix()

    o = sparse_block_dot(W, h, iIdx, b, oIdx)

    theano.printing.debugprint(tensor.grad(o.sum(), wrt=W))

    f = theano.function([W, h, iIdx, b, oIdx],
                        [o, tensor.grad(o.sum(), wrt=W)])
    assert hasattr(f.maker.fgraph.outputs[0].tag, 'trace')

    if theano.config.mode == "FAST_COMPILE":
        assert not f.maker.fgraph.toposort()[-1].op.inplace
    else:
        assert f.maker.fgraph.toposort()[-1].op.inplace 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:21,代碼來源:test_opt.py

示例3: test_sparseblockdot

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import ftensor3 [as 別名]
def test_sparseblockdot(self):
        """
        Compares the numpy version of sparseblockgemv to sparse_block_dot.
        """
        b = tensor.fmatrix()
        W = tensor.ftensor4()
        h = tensor.ftensor3()
        iIdx = tensor.imatrix()
        oIdx = tensor.imatrix()

        o = sparse_block_dot(W, h, iIdx, b, oIdx)

        f = theano.function([W, h, iIdx, b, oIdx], o, mode=self.mode)

        W_val, h_val, iIdx_val, b_val, oIdx_val = \
            BlockSparse_Gemv_and_Outer.gemv_data()

        th_out = f(W_val, h_val, iIdx_val, b_val, oIdx_val)

        ref_out = BlockSparse_Gemv_and_Outer.gemv_numpy(
            b_val.take(oIdx_val, axis=0), W_val, h_val, iIdx_val, oIdx_val)

        utt.assert_allclose(ref_out, th_out) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:25,代碼來源:test_blocksparse.py

示例4: test_sparseblockgemv

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import ftensor3 [as 別名]
def test_sparseblockgemv(self):
        """
        Compares the numpy and theano versions of sparseblockgemv.
        """
        b = tensor.fmatrix()
        W = tensor.ftensor4()
        h = tensor.ftensor3()
        iIdx = tensor.imatrix()
        oIdx = tensor.imatrix()

        o = self.gemv_op(b.take(oIdx, axis=0), W, h, iIdx, oIdx)

        f = theano.function([W, h, iIdx, b, oIdx], o, mode=self.mode)

        W_val, h_val, iIdx_val, b_val, oIdx_val = \
            BlockSparse_Gemv_and_Outer.gemv_data()

        th_out = f(W_val, h_val, iIdx_val, b_val, oIdx_val)
        ref_out = BlockSparse_Gemv_and_Outer.gemv_numpy(
            b_val.take(oIdx_val, axis=0), W_val, h_val, iIdx_val, oIdx_val)

        utt.assert_allclose(ref_out, th_out) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:24,代碼來源:test_blocksparse.py

示例5: test_sparseblockouter

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import ftensor3 [as 別名]
def test_sparseblockouter(self):
        o = tensor.ftensor4()
        x = tensor.ftensor3()
        y = tensor.ftensor3()
        xIdx = tensor.imatrix()
        yIdx = tensor.imatrix()

        out = self.outer_op(o, x, y, xIdx, yIdx)

        f = theano.function([o, x, y, xIdx, yIdx], out,
                            on_unused_input="warn", mode=self.mode)

        o_val, x_val, y_val, xIdx_val, yIdx_val = \
            BlockSparse_Gemv_and_Outer.outer_data()

        th_out = f(o_val, x_val, y_val, xIdx_val, yIdx_val)
        ref_out = BlockSparse_Gemv_and_Outer.outer_numpy(
            o_val, x_val, y_val, xIdx_val, yIdx_val)

        utt.assert_allclose(ref_out, th_out) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:22,代碼來源:test_blocksparse.py

示例6: test_Strides3D

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import ftensor3 [as 別名]
def test_Strides3D(self):
        x = T.ftensor3('x')

        for axis in [0, 1, 2, None, -1, -2, -3]:
            a = np.random.random((42, 30, 25)).astype("float32")
            cumsum_function = theano.function([x], cumsum(x, axis=axis),
                                              mode=self.mode)

            slicings = [slice(None, None, None),    # Normal strides
                        slice(None, None, 2),       # Stepped strides
                        slice(None, None, -1),      # Negative strides
                        ]

            # Cartesian product of all slicings to test.
            for slicing in itertools.product(slicings, repeat=x.ndim):
                f = theano.function([x], cumsum(x[slicing], axis=axis),
                                    mode=self.mode)
                assert [n for n in f.maker.fgraph.toposort()
                        if isinstance(n.op, GpuCumsum)]
                utt.assert_allclose(np.cumsum(a[slicing], axis=axis), f(a))
                utt.assert_allclose(np.cumsum(a[slicing], axis=axis),
                                    cumsum_function(a[slicing])) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:24,代碼來源:test_extra_ops.py

示例7: test_batched_dot_errors

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import ftensor3 [as 別名]
def test_batched_dot_errors(self):

        def fail(a_shp, b_shp):

            a=numpy.random.randn(*a_shp).astype(numpy.float32)
            b=numpy.random.randn(*b_shp).astype(numpy.float32)

            x=tensor.ftensor3()
            y=tensor.ftensor3()

            f=theano.function([x,y], batched_dot(x,y), mode=mode_with_gpu)

            z = f(a,b)

        # Different batch size
        self.assertRaises(RuntimeError, fail, (5,4,3), (6,3,2))

        # Shape mismatch
        self.assertRaises(RuntimeError, fail, (5,4,3), (5,2,2)) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:21,代碼來源:test_blas.py

示例8: setup

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import ftensor3 [as 別名]
def setup(self, bottom, top):
        # check input pair
        if len(bottom) != 2:
            raise Exception("Need two inputs to compute the dice. the result of the softmax and the ground truth.")

        if len(bottom[0].data.shape)==4 :
            self.prediction = T.fmatrix()
            self.ground_truth = T.fmatrix()
        elif len(bottom[0].data.shape)==5 :
            self.prediction = T.ftensor3()
            self.ground_truth = T.ftensor3()
        else:
            raise Exception('DiceIndexLayer only supports 2D or 3D data at the moment.')

        intersection = T.sum(self.prediction * self.ground_truth)
        denominator = T.sum(self.prediction) + T.sum(self.ground_truth)
        dice = 2 * intersection / (denominator + 0.00001)

        self.f = theano.function([self.prediction, self.ground_truth], dice)

        top[0].reshape(1) 
開發者ID:peterneher,項目名稱:peters-stuff,代碼行數:23,代碼來源:DiceIndex.py

示例9: test_blocksparse_inplace_outer_opt

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import ftensor3 [as 別名]
def test_blocksparse_inplace_outer_opt():
    b = tensor.fmatrix()
    W = tensor.ftensor4()
    h = tensor.ftensor3()
    iIdx = tensor.lmatrix()
    oIdx = tensor.lmatrix()

    o = sparse_block_dot(W, h, iIdx, b, oIdx)

    theano.printing.debugprint(tensor.grad(o.sum(), wrt=W))

    f = theano.function([W, h, iIdx, b, oIdx],
                        [o, tensor.grad(o.sum(), wrt=W)])

    if theano.config.mode == "FAST_COMPILE":
        assert not f.maker.fgraph.toposort()[-1].op.inplace
    else:
        assert f.maker.fgraph.toposort()[-1].op.inplace 
開發者ID:rizar,項目名稱:attention-lvcsr,代碼行數:20,代碼來源:test_opt.py

示例10: __init__

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import ftensor3 [as 別名]
def __init__(self, computeGradient = True):
    super(CpuCtc,self).__init__()
    self.computeGradient = computeGradient
    self.costs = T.fvector(name="ctc_cost")
    if self.computeGradient:
      self.gradients = T.ftensor3(name="ctc_grad") 
開發者ID:mcf06,項目名稱:theano_ctc,代碼行數:8,代碼來源:cpu_ctc.py

示例11: test_sparseblockgemvF

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import ftensor3 [as 別名]
def test_sparseblockgemvF(self):
        """
            Test the fortan order for W (which can happen in the grad for some
            graphs).
        """
        b = tensor.fmatrix()
        W = tensor.ftensor4()
        h = tensor.ftensor3()
        iIdx = tensor.imatrix()
        oIdx = tensor.imatrix()

        o = self.gemv_op(b.take(oIdx, axis=0),
                         tensor.DimShuffle((False, False, False, False),
                                           (0, 1, 3, 2))
                         (tensor.as_tensor_variable(W)),
                         h, iIdx, oIdx)

        f = theano.function([W, h, iIdx, b, oIdx], o, mode=self.mode)

        W_val, h_val, iIdx_val, b_val, oIdx_val = \
            BlockSparse_Gemv_and_Outer.gemv_data()

        th_out = f(numpy.swapaxes(W_val, 2, 3), h_val, iIdx_val, b_val,
                   oIdx_val)
        ref_out = BlockSparse_Gemv_and_Outer.gemv_numpy(
            b_val.take(oIdx_val, axis=0), W_val, h_val, iIdx_val, oIdx_val)

        utt.assert_allclose(ref_out, th_out) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:30,代碼來源:test_blocksparse.py

示例12: test_dot_infershape

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import ftensor3 [as 別名]
def test_dot_infershape(self):
        b = tensor.fmatrix()
        W = tensor.ftensor4()
        h = tensor.ftensor3()
        iIdx = tensor.imatrix()
        oIdx = tensor.imatrix()

        self._compile_and_check([W, h, iIdx, b, oIdx],
                                [sparse_block_dot(W, h, iIdx, b, oIdx)],
                                self.gemv_data(),
                                self.gemv_class) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:13,代碼來源:test_blocksparse.py

示例13: test_gemv_infershape

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import ftensor3 [as 別名]
def test_gemv_infershape(self):
        b = tensor.fmatrix()
        W = tensor.ftensor4()
        h = tensor.ftensor3()
        iIdx = tensor.imatrix()
        oIdx = tensor.imatrix()

        self._compile_and_check(
            [W, h, iIdx, b, oIdx],
            [self.gemv_op(b.take(oIdx, axis=0), W, h, iIdx, oIdx)],
            self.gemv_data(),
            self.gemv_class) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:14,代碼來源:test_blocksparse.py

示例14: test_outer_infershape

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import ftensor3 [as 別名]
def test_outer_infershape(self):
        o = tensor.ftensor4()
        x = tensor.ftensor3()
        y = tensor.ftensor3()
        xIdx = tensor.imatrix()
        yIdx = tensor.imatrix()

        self._compile_and_check([o, x, y, xIdx, yIdx],
                                [self.outer_op(o, x, y, xIdx, yIdx)],
                                self.outer_data(),
                                self.outer_class) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:13,代碼來源:test_blocksparse.py

示例15: test_infer_shape

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import ftensor3 [as 別名]
def test_infer_shape(self):
        # only matrix/matrix is supported
        admat = tensor.ftensor3()
        bdmat = tensor.ftensor3()
        admat_val = my_rand(7, 4, 5)
        bdmat_val = my_rand(7, 5, 3)
        self._compile_and_check([admat, bdmat],
                                [GpuBatchedDot()(admat, bdmat)],
                                [admat_val, bdmat_val],
                                GpuBatchedDot) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:12,代碼來源:test_blas.py


注:本文中的theano.tensor.ftensor3方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。