本文整理匯總了Python中theano.tensor.fscalar方法的典型用法代碼示例。如果您正苦於以下問題:Python tensor.fscalar方法的具體用法?Python tensor.fscalar怎麽用?Python tensor.fscalar使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類theano.tensor
的用法示例。
在下文中一共展示了tensor.fscalar方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: setUp
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import fscalar [as 別名]
def setUp(self):
self.iv = T.tensor(dtype='int32', broadcastable=(False,))
self.fv = T.tensor(dtype='float32', broadcastable=(False,))
self.fv1 = T.tensor(dtype='float32', broadcastable=(True,))
self.dv = T.tensor(dtype='float64', broadcastable=(False,))
self.dv1 = T.tensor(dtype='float64', broadcastable=(True,))
self.cv = T.tensor(dtype='complex64', broadcastable=(False,))
self.zv = T.tensor(dtype='complex128', broadcastable=(False,))
self.fv_2 = T.tensor(dtype='float32', broadcastable=(False,))
self.fv1_2 = T.tensor(dtype='float32', broadcastable=(True,))
self.dv_2 = T.tensor(dtype='float64', broadcastable=(False,))
self.dv1_2 = T.tensor(dtype='float64', broadcastable=(True,))
self.cv_2 = T.tensor(dtype='complex64', broadcastable=(False,))
self.zv_2 = T.tensor(dtype='complex128', broadcastable=(False,))
self.fm = T.fmatrix()
self.dm = T.dmatrix()
self.cm = T.cmatrix()
self.zm = T.zmatrix()
self.fa = T.fscalar()
self.da = T.dscalar()
self.ca = T.cscalar()
self.za = T.zscalar()
示例2: test_copy_delete_updates
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import fscalar [as 別名]
def test_copy_delete_updates(self):
x = T.fscalar('x')
# SharedVariable for tests, one of them has update
y = theano.shared(value=1, name='y')
z = theano.shared(value=2, name='z')
out = x + y + z
# Test for different linkers
# for mode in ["FAST_RUN","FAST_COMPILE"]:
# second_time = False
for mode in ["FAST_RUN", "FAST_COMPILE"]:
ori = theano.function([x], out, mode=mode, updates={z: z * 2})
cpy = ori.copy(delete_updates=True)
assert cpy(1)[0] == 4
assert cpy(1)[0] == 4
assert cpy(1)[0] == 4
示例3: test_param_allow_downcast_floatX
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import fscalar [as 別名]
def test_param_allow_downcast_floatX(self):
a = tensor.fscalar('a')
b = tensor.fscalar('b')
c = tensor.fscalar('c')
f = pfunc([In(a, allow_downcast=True),
In(b, allow_downcast=False),
In(c, allow_downcast=None)],
(a + b + c))
# If the values can be accurately represented, everything is OK
assert numpy.all(f(0, 0, 0) == 0)
# If allow_downcast is True, idem
assert numpy.allclose(f(0.1, 0, 0), 0.1)
# If allow_downcast is False, nope
self.assertRaises(TypeError, f, 0, 0.1, 0)
# If allow_downcast is None, it should work iff floatX=float32
if config.floatX == 'float32':
assert numpy.allclose(f(0, 0, 0.1), 0.1)
else:
self.assertRaises(TypeError, f, 0, 0, 0.1)
示例4: test_gpualloc_output_to_gpu
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import fscalar [as 別名]
def test_gpualloc_output_to_gpu():
a_val = numpy.asarray(numpy.random.rand(4, 5), dtype='float32')
a = tcn.shared_constructor(a_val)
b = T.fscalar()
f = theano.function([b], T.ones_like(a) + b, mode=mode_without_gpu)
f_gpu = theano.function([b], B.gpu_from_host(T.ones_like(a)) + b,
mode=mode_with_gpu)
f(2)
f_gpu(2)
assert sum([node.op == T.alloc for node in f.maker.fgraph.toposort()]) == 1
assert sum([node.op == B.gpu_alloc
for node in f_gpu.maker.fgraph.toposort()]) == 1
assert numpy.allclose(numpy.ones(a.get_value(borrow=True).shape) + 9,
f_gpu(9))
assert numpy.allclose(f(5), f_gpu(5))
示例5: setUp
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import fscalar [as 別名]
def setUp(self):
super(TestPdbBreakpoint, self).setUp()
# Sample computation that involves tensors with different numbers
# of dimensions
self.input1 = T.fmatrix()
self.input2 = T.fscalar()
self.output = T.dot((self.input1 - self.input2),
(self.input1 - self.input2).transpose())
# Declare the conditional breakpoint
self.breakpointOp = PdbBreakpoint("Sum of output too high")
self.condition = T.gt(self.output.sum(), 1000)
(self.monitored_input1,
self.monitored_input2,
self.monitored_output) = self.breakpointOp(self.condition,
self.input1,
self.input2, self.output)
示例6: test_copy_delete_updates
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import fscalar [as 別名]
def test_copy_delete_updates(self):
x = T.fscalar('x')
# SharedVariable for tests, one of them has update
y = theano.shared(value=1, name='y')
z = theano.shared(value=2, name='z')
out = x+y+z
# Test for different linkers
# for mode in ["FAST_RUN","FAST_COMPILE"]:
second_time = False
for mode in ["FAST_RUN","FAST_COMPILE"]:
ori = theano.function([x], out, mode=mode,updates={z:z*2})
cpy = ori.copy(delete_updates=True)
assert cpy(1)[0] == 4
assert cpy(1)[0] == 4
assert cpy(1)[0] == 4
示例7: get_SGD_trainer
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import fscalar [as 別名]
def get_SGD_trainer(self):
""" Returns a plain SGD minibatch trainer with learning rate as param. """
batch_x = T.fmatrix('batch_x')
batch_y = T.ivector('batch_y')
learning_rate = T.fscalar('lr') # learning rate
gparams = T.grad(self.mean_cost, self.params) # all the gradients
updates = OrderedDict()
for param, gparam in zip(self.params, gparams):
updates[param] = param - gparam * learning_rate
train_fn = theano.function(inputs=[theano.Param(batch_x),
theano.Param(batch_y),
theano.Param(learning_rate)],
outputs=self.mean_cost,
updates=updates,
givens={self.x: batch_x, self.y: batch_y})
return train_fn
示例8: get_adagrad_trainer
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import fscalar [as 別名]
def get_adagrad_trainer(self):
""" Returns an Adagrad (Duchi et al. 2010) trainer using a learning rate.
"""
batch_x = T.fmatrix('batch_x')
batch_y = T.ivector('batch_y')
learning_rate = T.fscalar('lr') # learning rate
gparams = T.grad(self.mean_cost, self.params) # all the gradients
updates = OrderedDict()
for accugrad, param, gparam in zip(self._accugrads, self.params, gparams):
# c.f. Algorithm 1 in the Adadelta paper (Zeiler 2012)
agrad = accugrad + gparam * gparam
dx = - (learning_rate / T.sqrt(agrad + self._eps)) * gparam
updates[param] = param + dx
updates[accugrad] = agrad
train_fn = theano.function(inputs=[theano.Param(batch_x),
theano.Param(batch_y),
theano.Param(learning_rate)],
outputs=self.mean_cost,
updates=updates,
givens={self.x: batch_x, self.y: batch_y})
return train_fn
示例9: test_default_dtype
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import fscalar [as 別名]
def test_default_dtype(self):
random = RandomStreams(utt.fetch_seed())
low = tensor.dscalar()
high = tensor.dscalar()
# Should not silently downcast from low and high
out0 = random.uniform(low=low, high=high, size=(42,))
assert out0.dtype == 'float64'
f0 = function([low, high], out0)
val0 = f0(-2.1, 3.1)
assert val0.dtype == 'float64'
# Should downcast, since asked explicitly
out1 = random.uniform(low=low, high=high, size=(42,), dtype='float32')
assert out1.dtype == 'float32'
f1 = function([low, high], out1)
val1 = f1(-1.1, 1.1)
assert val1.dtype == 'float32'
# Should use floatX
lowf = tensor.fscalar()
highf = tensor.fscalar()
outf = random.uniform(low=lowf, high=highf, size=(42,))
assert outf.dtype == config.floatX
ff = function([lowf, highf], outf)
valf = ff(numpy.float32(-0.1), numpy.float32(0.3))
assert valf.dtype == config.floatX
示例10: test_copy_share_memory
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import fscalar [as 別名]
def test_copy_share_memory(self):
x = T.fscalar('x')
# SharedVariable for tests, one of them has update
y = theano.shared(value=1)
z = theano.shared(value=2)
out = T.tanh((x + y + 2) / (x + z - 0.2)**2)
# Test for different linkers
for mode in ["FAST_RUN", "FAST_COMPILE"]:
ori = theano.function([x], [out], mode=mode, updates={z: z + 1})
cpy = ori.copy(share_memory=True)
# Test if memories shared
storage_map_ori = ori.fn.storage_map
storage_map_cpy = cpy.fn.storage_map
fgraph_cpy = cpy.maker.fgraph
# Assert intermediate and Constants storages are shared.
# and output stoarges are not shared
i_o_variables = fgraph_cpy.inputs + fgraph_cpy.outputs
ori_storages = storage_map_ori.values()
l = [val for key, val in storage_map_cpy.items()
if key not in i_o_variables or isinstance(key, theano.tensor.Constant)]
for storage in l:
self.assertTrue(any([storage is s for s in ori_storages]))
# Assert storages of SharedVariable without updates are shared
for (input, _1, _2), here, there in zip(ori.indices,
ori.input_storage,
cpy.input_storage):
self.assertTrue(here.data is there.data)
示例11: test_gpualloc_input_on_gpu
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import fscalar [as 別名]
def test_gpualloc_input_on_gpu():
a_val = numpy.asarray(numpy.random.rand(4, 5), dtype='float32')
a = tcn.shared_constructor(a_val)
b = T.fscalar()
f = theano.function([b], T.ones_like(a) + b, mode=mode_without_gpu)
f_gpu = theano.function([b], T.ones_like(a) + b, mode=mode_with_gpu)
assert sum([node.op == T.alloc for node in f.maker.fgraph.toposort()]) == 1
assert sum([node.op == B.gpu_alloc
for node in f_gpu.maker.fgraph.toposort()]) == 1
assert numpy.allclose(numpy.ones(a.get_value(borrow=True).shape) + 9,
f_gpu(9))
assert numpy.allclose(f(5), f_gpu(5))
示例12: test_scalar
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import fscalar [as 別名]
def test_scalar(self):
x = cuda.fscalar()
y = numpy.array(7, dtype='float32')
assert y.size == theano.function([x], x.size)(y)
示例13: compile
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import fscalar [as 別名]
def compile(self, cost, error_map_pyx, add_updates=[], debug_info=[]):
batch_idx = T.iscalar()
learning_rate = T.fscalar()
updates, norm_grad = self.hp.optimizer(cost, self.params.values(), lr=learning_rate)
updates += add_updates
self.outidx = {'cost':0, 'error_map_pyx':1, 'norm_grad':2}
outputs = [cost, error_map_pyx]
self.train = theano.function(inputs=[batch_idx, learning_rate], updates=updates,
givens={
self.X:self.data['tr_X'][batch_idx * self.hp.batch_size :
(batch_idx+1) * self.hp.batch_size],
self.Y:self.data['tr_Y'][batch_idx * self.hp.batch_size :
(batch_idx+1) * self.hp.batch_size]},
outputs=outputs + [norm_grad])
#,mode=theano.compile.nanguardmode.NanGuardMode(nan_is_error=True, inf_is_error=True, big_is_error=True))
#T.printing.debugprint(self.train)
#T.printing.pydotprint(self.train, outfile="logreg_pydotprint_train.png", var_with_name_simple=True)
self.validate = theano.function(inputs=[batch_idx],
givens={
self.X:self.data['va_X'][batch_idx * self.hp.test_batch_size :
(batch_idx+1) * self.hp.test_batch_size],
self.Y:self.data['va_Y'][batch_idx * self.hp.test_batch_size :
(batch_idx+1) * self.hp.test_batch_size]},
outputs=outputs)
self.test = theano.function(inputs=[batch_idx],
givens={
self.X:self.data['te_X'][batch_idx * self.hp.test_batch_size :
(batch_idx+1) * self.hp.test_batch_size],
self.Y:self.data['te_Y'][batch_idx * self.hp.test_batch_size :
(batch_idx+1) * self.hp.test_batch_size]},
outputs=outputs)
# --------------------------------------------------------------------------------------------------
示例14: test_copy_share_memory
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import fscalar [as 別名]
def test_copy_share_memory(self):
x = T.fscalar('x')
# SharedVariable for tests, one of them has update
y = theano.shared(value=1)
z = theano.shared(value=2)
out = T.tanh((x+y+2)/(x+z-0.2)**2)
# Test for different linkers
for mode in ["FAST_RUN","FAST_COMPILE"]:
ori = theano.function([x], [out], mode=mode,updates={z:z+1})
cpy = ori.copy(share_memory=True)
# Test if memories shared
storage_map_ori = ori.fn.storage_map
storage_map_cpy = cpy.fn.storage_map
fgraph_ori = ori.maker.fgraph
fgraph_cpy = cpy.maker.fgraph
# Assert intermediate and Constants storages are shared.
# and output stoarges are not shared
i_o_variables = fgraph_cpy.inputs + fgraph_cpy.outputs
ori_storages = storage_map_ori.values()
for key in storage_map_cpy.keys():
storage = storage_map_cpy[key]
if key not in i_o_variables or isinstance(key, theano.tensor.Constant):
self.assertTrue(any([ storage is s for s in ori_storages]))
# Assert storages of SharedVariable without updates are shared
for (input, _1, _2), here, there in zip(ori.indices,
ori.input_storage,
cpy.input_storage):
self.assertTrue(here.data is there.data)
示例15: get_rmsprop_trainer
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import fscalar [as 別名]
def get_rmsprop_trainer(self, with_step_adapt=True, nesterov=False): # TODO Nesterov momentum
""" Returns an RmsProp (possibly Nesterov) (Sutskever 2013) trainer
using self._rho, self._eps and self._momentum params. """
# TODO CHECK
batch_x = T.fmatrix('batch_x')
batch_y = T.ivector('batch_y')
learning_rate = T.fscalar('lr') # learning rate
gparams = T.grad(self.mean_cost, self.params)
updates = OrderedDict()
for accugrad, avggrad, accudelta, sa, param, gparam in zip(
self._accugrads, self._avggrads, self._accudeltas,
self._stepadapts, self.params, gparams):
acc_grad = self._rho * accugrad + (1 - self._rho) * gparam * gparam
avg_grad = self._rho * avggrad + (1 - self._rho) * gparam # this decay/discount (self._rho) should differ from the one of the line above
###scaled_grad = gparam / T.sqrt(acc_grad + self._eps) # original RMSprop gradient scaling
scaled_grad = gparam / T.sqrt(acc_grad - avg_grad**2 + self._eps) # Alex Graves' RMSprop variant (divide by a "running stddev" of the updates)
if with_step_adapt:
incr = sa * (1. + self._stepadapt_alpha)
#decr = sa * (1. - self._stepadapt_alpha)
decr = sa * (1. - 2*self._stepadapt_alpha)
###steps = sa * T.switch(accudelta * -gparam >= 0, incr, decr)
steps = T.clip(T.switch(accudelta * -gparam >= 0, incr, decr), self._eps, 1./self._eps) # bad overloading of self._eps!
scaled_grad = steps * scaled_grad
updates[sa] = steps
dx = self._momentum * accudelta - learning_rate * scaled_grad
updates[param] = param + dx
updates[accugrad] = acc_grad
updates[avggrad] = avg_grad
updates[accudelta] = dx
train_fn = theano.function(inputs=[theano.Param(batch_x),
theano.Param(batch_y),
theano.Param(learning_rate)],
outputs=self.mean_cost,
updates=updates,
givens={self.x: batch_x, self.y: batch_y})
return train_fn