當前位置: 首頁>>代碼示例>>Python>>正文


Python extra_ops.cumsum方法代碼示例

本文整理匯總了Python中theano.tensor.extra_ops.cumsum方法的典型用法代碼示例。如果您正苦於以下問題:Python extra_ops.cumsum方法的具體用法?Python extra_ops.cumsum怎麽用?Python extra_ops.cumsum使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在theano.tensor.extra_ops的用法示例。


在下文中一共展示了extra_ops.cumsum方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_Strides1D

# 需要導入模塊: from theano.tensor import extra_ops [as 別名]
# 或者: from theano.tensor.extra_ops import cumsum [as 別名]
def test_Strides1D(self):
        x = T.fvector('x')

        for axis in [0, None, -1]:
            a = np.random.random((42,)).astype("float32")
            cumsum_function = theano.function([x], cumsum(x, axis=axis),
                                              mode=self.mode)

            slicings = [slice(None, None, None),    # Normal strides
                        slice(None, None, 2),       # Stepped strides
                        slice(None, None, -1),      # Negative strides
                        ]

            # Cartesian product of all slicings to test.
            for slicing in itertools.product(slicings, repeat=x.ndim):
                f = theano.function([x], cumsum(x[slicing], axis=axis),
                                    mode=self.mode)
                assert [n for n in f.maker.fgraph.toposort()
                        if isinstance(n.op, GpuCumsum)]
                utt.assert_allclose(np.cumsum(a[slicing], axis=axis), f(a))
                utt.assert_allclose(np.cumsum(a[slicing], axis=axis),
                                    cumsum_function(a[slicing])) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:24,代碼來源:test_extra_ops.py

示例2: test_Strides2D

# 需要導入模塊: from theano.tensor import extra_ops [as 別名]
# 或者: from theano.tensor.extra_ops import cumsum [as 別名]
def test_Strides2D(self):
        x = T.fmatrix('x')

        for axis in [0, 1, None, -1, -2]:
            a = np.random.random((42, 30)).astype("float32")
            cumsum_function = theano.function([x], cumsum(x, axis=axis),
                                              mode=self.mode)

            slicings = [slice(None, None, None),    # Normal strides
                        slice(None, None, 2),       # Stepped strides
                        slice(None, None, -1),      # Negative strides
                        ]

            # Cartesian product of all slicings to test.
            for slicing in itertools.product(slicings, repeat=x.ndim):
                f = theano.function([x], cumsum(x[slicing], axis=axis),
                                    mode=self.mode)
                assert [n for n in f.maker.fgraph.toposort()
                        if isinstance(n.op, GpuCumsum)]
                utt.assert_allclose(np.cumsum(a[slicing], axis=axis), f(a))
                utt.assert_allclose(np.cumsum(a[slicing], axis=axis),
                                    cumsum_function(a[slicing])) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:24,代碼來源:test_extra_ops.py

示例3: test_Strides3D

# 需要導入模塊: from theano.tensor import extra_ops [as 別名]
# 或者: from theano.tensor.extra_ops import cumsum [as 別名]
def test_Strides3D(self):
        x = T.ftensor3('x')

        for axis in [0, 1, 2, None, -1, -2, -3]:
            a = np.random.random((42, 30, 25)).astype("float32")
            cumsum_function = theano.function([x], cumsum(x, axis=axis),
                                              mode=self.mode)

            slicings = [slice(None, None, None),    # Normal strides
                        slice(None, None, 2),       # Stepped strides
                        slice(None, None, -1),      # Negative strides
                        ]

            # Cartesian product of all slicings to test.
            for slicing in itertools.product(slicings, repeat=x.ndim):
                f = theano.function([x], cumsum(x[slicing], axis=axis),
                                    mode=self.mode)
                assert [n for n in f.maker.fgraph.toposort()
                        if isinstance(n.op, GpuCumsum)]
                utt.assert_allclose(np.cumsum(a[slicing], axis=axis), f(a))
                utt.assert_allclose(np.cumsum(a[slicing], axis=axis),
                                    cumsum_function(a[slicing])) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:24,代碼來源:test_extra_ops.py

示例4: test_GpuCumsum1D

# 需要導入模塊: from theano.tensor import extra_ops [as 別名]
# 或者: from theano.tensor.extra_ops import cumsum [as 別名]
def test_GpuCumsum1D(self):
        block_max_size = self.max_threads_dim0 * 2

        x = T.fvector('x')
        f = theano.function([x], cumsum(x), mode=self.mode)
        assert [n for n in f.maker.fgraph.toposort()
                if isinstance(n.op, GpuCumsum)]

        # Extensive testing for the first 1025 sizes
        a = np.random.random(1025).astype("float32")
        for i in xrange(a.shape[0]):
            utt.assert_allclose(np.cumsum(a[:i]), f(a[:i]))

        # Use multiple GPU threadblocks
        a = np.random.random((block_max_size+2,)).astype("float32")
        utt.assert_allclose(np.cumsum(a), f(a))

        # Use recursive cumsum
        a = np.ones((block_max_size*(block_max_size+1)+2,),
                    dtype="float32")
        utt.assert_allclose(np.cumsum(a), f(a)) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:23,代碼來源:test_extra_ops.py

示例5: cost

# 需要導入模塊: from theano.tensor import extra_ops [as 別名]
# 或者: from theano.tensor.extra_ops import cumsum [as 別名]
def cost(self, observed, at_risk):
		"""Calculates the cox negative log likelihood.

		Args:
			observed: 1D array. Event status; 0 means censored.
			at_risk: 1D array. Element i of this array indicates the index of the
					 first patient in the at risk group of patient i, when patients
					 are sorted by increasing time to event.
		Returns:
			Objective function to be maximized.
		"""
		prediction = self.output
		# Subtracts maximum to facilitate computation.
		factorizedPred = prediction - prediction.max()
		exp = T.exp(factorizedPred)[::-1]
		# Calculates the reversed partial cumulative sum.
		partial_sum = Te.cumsum(exp)[::-1] + 1 
		# Adds the subtracted maximum back.
		log_at_risk = T.log(partial_sum[at_risk]) + prediction.max() 
		diff = prediction - log_at_risk
		cost = T.sum(T.dot(observed, diff))
		return cost 
開發者ID:prasadseemakurthi,項目名稱:Deep-Neural-Networks-HealthCare,代碼行數:24,代碼來源:RiskLayer.py

示例6: test_GpuCumsum2D

# 需要導入模塊: from theano.tensor import extra_ops [as 別名]
# 或者: from theano.tensor.extra_ops import cumsum [as 別名]
def test_GpuCumsum2D(self):
        block_max_size = self.max_threads_dim0 * 2

        x = T.fmatrix('x')
        for shape_axis, axis in zip([0, 1, 0, 1, 0], [0, 1, None, -1, -2]):
            f = theano.function([x], cumsum(x, axis=axis), mode=self.mode)
            assert [n for n in f.maker.fgraph.toposort()
                    if isinstance(n.op, GpuCumsum)]

            # Extensive testing for the first 1025 sizes
            a_shape = [5, 5]
            a_shape[shape_axis] = 1025
            a = np.random.random(a_shape).astype("float32")
            slices = [slice(None), slice(None)]
            for i in xrange(a.shape[shape_axis]):
                slices[shape_axis] = slice(i)
                fa = f(a[slices])
                npa = np.cumsum(a[slices], axis=axis)
                utt.assert_allclose(npa, fa)

            # Use multiple GPU threadblocks
            a_shape = [5, 5]
            a_shape[shape_axis] = block_max_size+2
            a = np.random.random(a_shape).astype("float32")
            utt.assert_allclose(np.cumsum(a, axis=axis), f(a))

            # Use multiple GPU gridblocks
            a_shape = [4, 4]
            a_shape[1-shape_axis] = self.max_grid_size1+1
            a = np.random.random(a_shape).astype("float32")
            utt.assert_allclose(np.cumsum(a, axis=axis), f(a), rtol=5e-5)

            # Use recursive cumsum
            a_shape = [3, 3]
            a_shape[shape_axis] = block_max_size*(block_max_size+1)+2
            a = np.random.random(a_shape).astype("float32")
            a = np.sign(a-0.5).astype("float32")  # Avoid floating point error
            utt.assert_allclose(np.cumsum(a, axis=axis), f(a)) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:40,代碼來源:test_extra_ops.py

示例7: test_GpuCumsum4D

# 需要導入模塊: from theano.tensor import extra_ops [as 別名]
# 或者: from theano.tensor.extra_ops import cumsum [as 別名]
def test_GpuCumsum4D(self):
        # Should not use the GPU version.
        x = T.ftensor4('x')
        f = theano.function([x], cumsum(x, axis=1), mode=self.mode)
        assert [n for n in f.maker.fgraph.toposort()
                if isinstance(n.op, CumsumOp)] 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:8,代碼來源:test_extra_ops.py


注:本文中的theano.tensor.extra_ops.cumsum方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。