當前位置: 首頁>>代碼示例>>Python>>正文


Python tensor.dscalar方法代碼示例

本文整理匯總了Python中theano.tensor.dscalar方法的典型用法代碼示例。如果您正苦於以下問題:Python tensor.dscalar方法的具體用法?Python tensor.dscalar怎麽用?Python tensor.dscalar使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在theano.tensor的用法示例。


在下文中一共展示了tensor.dscalar方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: setUp

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import dscalar [as 別名]
def setUp(self):
        self.iv = T.tensor(dtype='int32', broadcastable=(False,))
        self.fv = T.tensor(dtype='float32', broadcastable=(False,))
        self.fv1 = T.tensor(dtype='float32', broadcastable=(True,))
        self.dv = T.tensor(dtype='float64', broadcastable=(False,))
        self.dv1 = T.tensor(dtype='float64', broadcastable=(True,))
        self.cv = T.tensor(dtype='complex64', broadcastable=(False,))
        self.zv = T.tensor(dtype='complex128', broadcastable=(False,))

        self.fv_2 = T.tensor(dtype='float32', broadcastable=(False,))
        self.fv1_2 = T.tensor(dtype='float32', broadcastable=(True,))
        self.dv_2 = T.tensor(dtype='float64', broadcastable=(False,))
        self.dv1_2 = T.tensor(dtype='float64', broadcastable=(True,))
        self.cv_2 = T.tensor(dtype='complex64', broadcastable=(False,))
        self.zv_2 = T.tensor(dtype='complex128', broadcastable=(False,))

        self.fm = T.fmatrix()
        self.dm = T.dmatrix()
        self.cm = T.cmatrix()
        self.zm = T.zmatrix()

        self.fa = T.fscalar()
        self.da = T.dscalar()
        self.ca = T.cscalar()
        self.za = T.zscalar() 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:27,代碼來源:test_blas.py

示例2: test_infer_shape

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import dscalar [as 別名]
def test_infer_shape(self):
        z = tensor.dtensor3()
        x = tensor.dmatrix()
        y = tensor.dscalar()
        self._compile_and_check([x, y], [self.op(x, y)],
                                [numpy.random.rand(8, 5),
                                 numpy.random.rand()],
                                self.op_class)
        self._compile_and_check([z, y], [self.op(z, y)],
                                # must be square when nd>2
                                [numpy.random.rand(8, 8, 8),
                                 numpy.random.rand()],
                                self.op_class,
                                warn=False) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:16,代碼來源:test_extra_ops.py

示例3: test_simple_2d

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import dscalar [as 別名]
def test_simple_2d(self):
        """Increments or sets part of a tensor by a scalar using full slice and
        a partial slice depending on a scalar.
        """
        a = tt.dmatrix()
        increment = tt.dscalar()
        sl1 = slice(None)
        sl2_end = tt.lscalar()
        sl2 = slice(sl2_end)

        for do_set in [False, True]:

            if do_set:
                resut = tt.set_subtensor(a[sl1, sl2], increment)
            else:
                resut = tt.inc_subtensor(a[sl1, sl2], increment)

            f = theano.function([a, increment, sl2_end], resut)

            val_a = numpy.ones((5, 5))
            val_inc = 2.3
            val_sl2_end = 2

            result = f(val_a, val_inc, val_sl2_end)

            expected_result = numpy.copy(val_a)
            if do_set:
                expected_result[:, :val_sl2_end] = val_inc
            else:
                expected_result[:, :val_sl2_end] += val_inc

            utt.assert_allclose(result, expected_result) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:34,代碼來源:test_inc_subtensor.py

示例4: test2

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import dscalar [as 別名]
def test2(self):
        """Test that it works on scalar variables"""
        a = T.dscalar()
        d_a = T.DimShuffle([], [])(a)
        d_a2 = T.DimShuffle([], ['x', 'x'])(a)

        self.assertTrue(_as_scalar(a) is a)
        self.assertTrue(_as_scalar(d_a) is a)
        self.assertTrue(_as_scalar(d_a2) is a) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:11,代碼來源:test_blas.py

示例5: test_upcasting_scalar_nogemv

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import dscalar [as 別名]
def test_upcasting_scalar_nogemv(self):
        # Test that the optimization does not crash when the scale has
        # an incorrect dtype, and forces upcasting of the result
        # We put this test in this class to test it on the gpu too.
        vs = self.get_data()
        alpha_v, beta_v, a_v, x_v, y_v = vs
        alpha_v = alpha_v.astype("float64")
        a_v = a_v.astype("float32")
        x_v = x_v.astype("float32")
        y_v = y_v.astype("float32")

        alpha = T.dscalar('alpha')
        a = self.shared(a_v)
        x = self.shared(x_v)
        y = self.shared(y_v)

        rval = T.dot(a, x) * alpha + y

        f = theano.function([alpha], rval, mode=self.mode)
        # this function is currently optimized so that the gemv is
        # done inplace on a temporarily allocated-buffer, which is
        # then scaled by alpha and to t with a fused elemwise.
        n_gemvs = 0
        #theano.printing.debugprint(f, print_type=True)
        for node in f.maker.fgraph.toposort():
            if node.op == self.gemv_inplace:
                n_gemvs += 1
                assert node.outputs[0].dtype == 'float32'
        assert n_gemvs == 1, n_gemvs
        self.assertFunctionContains1(f, self.gemv_inplace)
        f(alpha_v) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:33,代碼來源:test_blas.py

示例6: test_default_dtype

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import dscalar [as 別名]
def test_default_dtype(self):
        random = RandomStreams(utt.fetch_seed())
        low = tensor.dscalar()
        high = tensor.dscalar()

        # Should not silently downcast from low and high
        out0 = random.uniform(low=low, high=high, size=(42,))
        assert out0.dtype == 'float64'
        f0 = function([low, high], out0)
        val0 = f0(-2.1, 3.1)
        assert val0.dtype == 'float64'

        # Should downcast, since asked explicitly
        out1 = random.uniform(low=low, high=high, size=(42,), dtype='float32')
        assert out1.dtype == 'float32'
        f1 = function([low, high], out1)
        val1 = f1(-1.1, 1.1)
        assert val1.dtype == 'float32'

        # Should use floatX
        lowf = tensor.fscalar()
        highf = tensor.fscalar()
        outf = random.uniform(low=lowf, high=highf, size=(42,))
        assert outf.dtype == config.floatX
        ff = function([lowf, highf], outf)
        valf = ff(numpy.float32(-0.1), numpy.float32(0.3))
        assert valf.dtype == config.floatX 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:29,代碼來源:test_shared_randomstreams.py

示例7: test_givens_replaces_shared_variable

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import dscalar [as 別名]
def test_givens_replaces_shared_variable(self):
        a = shared(1., 'a')
        a.default_update = a + 3.
        b = tensor.dscalar('b')
        c = a + 10
        f = pfunc([b], c, givens={a: b})

        assert len(f.maker.fgraph.inputs) == 1
        assert len(f.maker.fgraph.outputs) == 1 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:11,代碼來源:test_pfunc.py

示例8: test_divide_floats

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import dscalar [as 別名]
def test_divide_floats(self):
        a = T.dscalar('a')
        b = T.dscalar('b')
        c = theano.function([a, b], b / a)
        d = theano.function([a, b], b // a)
        assert c(6, 3) == 0.5
        assert d(6, 3) == 0.0 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:9,代碼來源:test_div_future.py

示例9: __init__

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import dscalar [as 別名]
def __init__(self, f, state_size, action_size, **kwargs):
        """Constructs a BatchAutoDiffDynamics model.

        Args:
            f: Symbolic function with the following signature:
                Args:
                    x: Batch of state variables.
                    u: Batch of action variables.
                    i: Batch of time step variables.
                Returns:
                    f: Batch of next state variables.
            **kwargs: Additional keyword-arguments to pass to
                `theano.function()`.
        """
        self._fn = f
        self._state_size = state_size
        self._action_size = action_size

        self._x = x = T.dvector("x")
        self._u = u = T.dvector("u")
        self._i = i = T.dscalar("i")
        inputs = [x, u, i]

        x_rep_1 = T.tile(x, (1, 1))
        u_rep_1 = T.tile(u, (1, 1))
        i_rep_1 = T.tile(i, (1, 1))
        self._tensor = f(x_rep_1, u_rep_1, i_rep_1)
        self._f = as_function(self._tensor, inputs, name="f", **kwargs)

        self._J_x, self._J_u, _ = batch_jacobian(f, inputs, state_size)
        self._f_x = as_function(self._J_x, inputs, name="f_x", **kwargs)
        self._f_u = as_function(self._J_u, inputs, name="f_u", **kwargs)

        super(BatchAutoDiffDynamics, self).__init__() 
開發者ID:anassinator,項目名稱:ilqr,代碼行數:36,代碼來源:dynamics.py

示例10: test_addition

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import dscalar [as 別名]
def test_addition(self):
        # Declare two symbolic floating-point scalars.
        a = tensor.dscalar()
        b = tensor.dscalar()

        # Create a simple expression.
        c = a + b

        # Convert the expression into a callable object that takes (a,b)
        # values as input and computes a value for 'c'.
        f = theano.function([a,b], c)

        # Bind 1.5 to 'a', 2.5 to 'b', and evaluate 'c'.
        self.assertEqual(4.0, f(1.5, 2.5)) 
開發者ID:Kaggle,項目名稱:docker-python,代碼行數:16,代碼來源:test_theano.py

示例11: test_mixture_api

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import dscalar [as 別名]
def test_mixture_api():
    # Check basic API
    p1 = Normal(mu=0.0, sigma=T.constant(1.0))
    p2 = Normal(mu=1.0, sigma=2.0)
    m = Mixture(components=[p1, p2], weights=[0.25])

    assert len(m.components) == 2
    assert len(m.weights) == 2

    assert len(m.parameters_) == 4
    assert len(m.constants_) == 1
    assert len(m.observeds_) == 0

    assert p1.mu in m.parameters_
    assert p1.sigma in m.constants_
    assert p2.mu in m.parameters_
    assert p2.sigma in m.parameters_
    assert m.X == p1.X
    assert m.X == p2.X
    assert m.ndim == p1.ndim
    assert m.ndim == p2.ndim

    m = Mixture(components=[p1, p2])
    w = m.compute_weights()
    assert_array_equal(w, [0.5, 0.5])

    y = T.dscalar(name="y")
    w1 = T.constant(0.25)
    w2 = y * 2
    m = Mixture(components=[p1, p2], weights=[w1, w2])
    assert y in m.observeds_

    # Check errors
    assert_raises(ValueError, Mixture,
                  components=[p1, p1, p1], weights=[1.0]) 
開發者ID:diana-hep,項目名稱:carl,代碼行數:37,代碼來源:test_mixture.py

示例12: test_abs_b_one

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import dscalar [as 別名]
def test_abs_b_one():
    """Check derivs are finite when b=+/-1."""
    b = tt.dscalar()
    b.tag.test_value = -1.0
    map = starry.Map(reflected=True)

    def flux(b):
        return map.flux(zs=-b, ys=0)

    grad = theano.function([b], tt.grad(flux(b)[0], [b]))
    assert not np.isnan(grad(-1.0)[0]) and not np.isnan(grad(1.0)[0]) 
開發者ID:rodluger,項目名稱:starry,代碼行數:13,代碼來源:test_reflected_occultation_derivs.py

示例13: test_simple_3d

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import dscalar [as 別名]
def test_simple_3d(self):
        """Increments or sets part of a tensor by a scalar using full slice and
        a partial slice depending on a scalar.
        """
        a = tt.dtensor3()
        increment = tt.dscalar()
        sl1 = slice(None)
        sl2_end = tt.lscalar()
        sl2 = slice(sl2_end)
        sl3 = 2

        val_a = numpy.ones((5, 3, 4))
        val_inc = 2.3
        val_sl2_end = 2

        for method in [tt.set_subtensor, tt.inc_subtensor]:
            print("MethodSet", method)

            resut = method(a[sl1, sl3, sl2], increment)

            f = theano.function([a, increment, sl2_end], resut)

            expected_result = numpy.copy(val_a)
            result = f(val_a, val_inc, val_sl2_end)

            if method is tt.set_subtensor:
                expected_result[:, sl3, :val_sl2_end] = val_inc
            else:
                expected_result[:, sl3, :val_sl2_end] += val_inc

            utt.assert_allclose(result, expected_result)

            # Test when we broadcast the result
            resut = method(a[sl1, sl2], increment)

            f = theano.function([a, increment, sl2_end], resut)

            expected_result = numpy.copy(val_a)
            result = f(val_a, val_inc, val_sl2_end)

            if method is tt.set_subtensor:
                expected_result[:, :val_sl2_end] = val_inc
            else:
                expected_result[:, :val_sl2_end] += val_inc

            utt.assert_allclose(result, expected_result) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:48,代碼來源:test_inc_subtensor.py

示例14: test_local_dot22_to_dot22scalar

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import dscalar [as 別名]
def test_local_dot22_to_dot22scalar():
    """
    This test that the bug in gh-1507 is really fixed
    """
    A = T.dmatrix()
    mode = theano.compile.mode.get_default_mode()
    opt = theano.tensor.opt.in2out(
        theano.tensor.blas.local_dot22_to_dot22scalar)
    mode = mode.__class__(optimizer=opt)

    x = T.dscalar()
    y = T.dscalar()
    z = T.dscalar()
    # make sure to don't have dimshuffle as we don't opt those cases
    m = T.dmatrix()
    r = T.drow()
    for idx, node in enumerate([
        # Old working cases
        T.mul(_dot22(A, A), x),
        T.mul(_dot22(A, A), x, y),
        T.mul(_dot22(A, A), x, r),
        T.mul(_dot22(A, A), m, x),
        T.mul(_dot22(A, A), x, m),
        T.mul(_dot22(A, A), x, (m * y)),
        T.mul(_dot22(A, A), (m * y), x),
        T.mul(_dot22(A, A), x, (r * y)),
        T.mul(_dot22(A, A), (r * y), x),
        T.mul(_dot22(A, A), (x * y), (m * x)),
        T.mul(_dot22(A, A), (r * y), (y * x)),

        # Case that was raising an assert that is fixed in gh-1507
        T.mul(_dot22(A, A), (m * y), m),
        T.mul(_dot22(A, A), m, (m * y)),
        T.mul(_dot22(A, A), (r * y), (m * x)),

        # assert fixed in gh-1507 and opt case added in gh-1515
        T.mul(_dot22(A, A), (m * y * z), m),
        T.mul(_dot22(A, A), m, (m * y * z)),

        # Opt case added in gh-1515
        T.mul(_dot22(A, A), T.mul(m, y, z), m),
        T.mul(_dot22(A, A), m, T.mul(m, y, z)),

        # Case that opt later in gh-1515
        T.mul(_dot22(A, A), (r * m), (m * x)),
    ]):
        node2 = theano.tensor.blas.local_dot22_to_dot22scalar.transform(
            node.owner)
        assert node2
        f = theano.function([x, y, z, m, r, A], node,
                            mode=mode, on_unused_input='ignore')
        f(.1, .2, .3, [[1, 2], [3, 4]], [[5, 6]], [[7, 8], [9, 10]]) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:54,代碼來源:test_blas.py

示例15: __theano_train__

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import dscalar [as 別名]
def __theano_train__(self, ):
        """
        訓練階段跑一遍訓練序列
        """
        uidx, pqidx = T.iscalar(), T.ivector()
        adidx, tidx = T.dscalar(), T.iscalar()
        du = self.du[uidx]
        dppq = self.dp[pqidx]
        dspq = self.ds[pqidx]

        """
            # PRME
            D_u,lc,c = D^P_u,l if delta(l, lc) > threshold
                     = alpha * D^P_u,l + (1 - alpha) * D^S_lc,l otherwise
        """
        Dp_p = T.sum(T.pow(du - dppq[0], 2))
        Dp_q = T.sum(T.pow(du - dppq[1], 2))
        Ds_p = T.sum(T.pow(dspq[0] - dspq[2], 2))
        Ds_q = T.sum(T.pow(dspq[1] - dspq[2], 2))
        w = T.pow((1 + adidx), 0.25)
        Dp = ifelse(T.gt(tidx, self.thd), Dp_p, w * (self.cw * Dp_p + (1 - self.cw) * Ds_p))
        Dq = ifelse(T.gt(tidx, self.thd), Dp_q, w * (self.cw * Dp_q + (1 - self.cw) * Ds_q))

        upq = T.sum(T.log(sigmoid(- Dp + Dq)))

        # ----------------------------------------------------------------------------
        # cost, gradients, learning rate, L2 regularization
        lr, l2 = self.alpha_lambda[0], self.alpha_lambda[1]
        bpr_l2_sqr = (
            T.sum([T.sum(par ** 2) for par in [du, dppq, dspq]]))
        costs = (
            upq -
            0.5 * l2 * bpr_l2_sqr)
        # 1個user,2個items,這種更新求導是最快的。
        pars_subs = [(self.du, du), (self.dp, dppq), (self.ds, dspq)]
        seq_updates = [(par, T.set_subtensor(sub, sub + lr * T.grad(costs, sub)))
                       for par, sub in pars_subs]
        # ----------------------------------------------------------------------------

        # 輸入用戶、正負樣本及其它參數後,更新變量,返回損失。
        self.prme_train = theano.function(
            inputs=[uidx, pqidx, adidx, tidx],
            outputs=upq,
            updates=seq_updates) 
開發者ID:tangrizzly,項目名稱:Point-of-Interest-Recommendation,代碼行數:46,代碼來源:PRPRM.py


注:本文中的theano.tensor.dscalar方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。