本文整理匯總了Python中theano.tensor.cumsum方法的典型用法代碼示例。如果您正苦於以下問題:Python tensor.cumsum方法的具體用法?Python tensor.cumsum怎麽用?Python tensor.cumsum使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類theano.tensor
的用法示例。
在下文中一共展示了tensor.cumsum方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: nll_of_x_given_o
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import cumsum [as 別名]
def nll_of_x_given_o(self, input, ordering):
""" Returns the theano graph that computes $-ln p(\bx|o)$.
Parameters
----------
input: 1D vector
One image with shape (nb_channels * images_height * images_width).
ordering: 1D vector of int
List of pixel indices representing the input ordering.
"""
D = int(np.prod(self.image_shape))
mask_o_d = T.zeros((D, D), dtype=theano.config.floatX)
mask_o_d = T.set_subtensor(mask_o_d[T.arange(D), ordering], 1.)
mask_o_lt_d = T.cumsum(mask_o_d, axis=0)
mask_o_lt_d = T.set_subtensor(mask_o_lt_d[1:], mask_o_lt_d[:-1])
mask_o_lt_d = T.set_subtensor(mask_o_lt_d[0, :], 0.)
input = T.tile(input[None, :], (D, 1))
nll = -T.sum(self.lnp_x_o_d_given_x_o_lt_d(input, mask_o_d, mask_o_lt_d))
return nll
示例2: set_rest_ref_matrix
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import cumsum [as 別名]
def set_rest_ref_matrix(self, number_of_points_per_surface):
ref_positions = T.cumsum(T.concatenate((T.stack([0]), number_of_points_per_surface[:-1] + 1)))
cum_rep = T.cumsum(T.concatenate((T.stack([0]), number_of_points_per_surface)))
ref_points_init = T.zeros((cum_rep[-1], 3))
ref_points_loop, update_ = theano.scan(self.repeat_list,
outputs_info=[ref_points_init],
sequences=[self.surface_points_all[ref_positions],
dict(input=cum_rep, taps=[0, 1])],
non_sequences=[T.as_tensor(3)],
return_list=False)
# ref_points_loop = theano.printing.Print('loop')(ref_points_loop)
ref_points = ref_points_loop[-1]
# ref_points = T.repeat(self.surface_points_all[ref_positions], number_of_points_per_surface, axis=0)
rest_mask = T.ones(T.stack([self.surface_points_all.shape[0]]), dtype='int16')
rest_mask = T.set_subtensor(rest_mask[ref_positions], 0)
rest_mask = T.nonzero(rest_mask)[0]
rest_points = self.surface_points_all[rest_mask]
return [ref_points, rest_points, ref_positions, rest_mask]
示例3: set_nugget_surface_points
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import cumsum [as 別名]
def set_nugget_surface_points(self, ref_positions, rest_mask, number_of_points_per_surface):
# ref_nugget = T.repeat(self.nugget_effect_scalar_T[ref_positions], number_of_points_per_surface)
cum_rep = T.cumsum(T.concatenate((T.stack([0]), number_of_points_per_surface)))
ref_nugget_init = T.zeros((cum_rep[-1], 1))
ref_nugget_loop, update_ = theano.scan(self.repeat_list,
outputs_info=[ref_nugget_init],
sequences=[self.nugget_effect_scalar_T[ref_positions],
dict(input=cum_rep, taps=[0, 1])],
non_sequences=[T.as_tensor(1)],
return_list=False)
# ref_nugget_loop = theano.printing.Print('loop')(ref_nugget_loop)
ref_nugget = ref_nugget_loop[-1]
rest_nugget = self.nugget_effect_scalar_T[rest_mask]
nugget_rest_ref = ref_nugget.reshape((1, -1))[0] + rest_nugget
return nugget_rest_ref
示例4: add_exploration
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import cumsum [as 別名]
def add_exploration(recognizer, data, train_conf):
prediction = None
prediction_mask = None
explore_conf = train_conf.get('exploration', 'imitative')
if explore_conf in ['greedy', 'mixed']:
length_expand = 10
prediction = recognizer.get_generate_graph(
n_steps=recognizer.labels.shape[0] + length_expand)['outputs']
prediction_mask = tensor.lt(
tensor.cumsum(tensor.eq(prediction, data.eos_label), axis=0),
1).astype(floatX)
prediction_mask = tensor.roll(prediction_mask, 1, 0)
prediction_mask = tensor.set_subtensor(
prediction_mask[0, :], tensor.ones_like(prediction_mask[0, :]))
if explore_conf == 'mixed':
batch_size = recognizer.labels.shape[1]
targets = tensor.concatenate([
recognizer.labels,
tensor.zeros((length_expand, batch_size), dtype='int64')])
targets_mask = tensor.concatenate([
recognizer.labels_mask,
tensor.zeros((length_expand, batch_size), dtype=floatX)])
rng = MRG_RandomStreams()
generate = rng.binomial((batch_size,), p=0.5, dtype='int64')
prediction = (generate[None, :] * prediction +
(1 - generate[None, :]) * targets)
prediction_mask = (tensor.cast(generate[None, :] *
prediction_mask, floatX) +
tensor.cast((1 - generate[None, :]) *
targets_mask, floatX))
prediction_mask = theano.gradient.disconnected_grad(prediction_mask)
elif explore_conf != 'imitative':
raise ValueError
return prediction, prediction_mask
示例5: monotonicity_penalty
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import cumsum [as 別名]
def monotonicity_penalty(weights, mask_x=None):
cumsums = tensor.cumsum(weights, axis=2)
penalties = tensor.maximum(cumsums[1:] - cumsums[:-1], 0).sum(axis=2)
if mask_x:
penalties *= mask_x[1:]
return penalties.sum()
示例6: compute_output
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import cumsum [as 別名]
def compute_output(self, network, in_vw):
axis = network.find_hyperparameter(["axis"])
network.create_vw(
"default",
variable=T.cumsum(in_vw.variable, axis=axis),
shape=in_vw.shape,
tags={"output"}
)
示例7: drawpoints
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import cumsum [as 別名]
def drawpoints(points, xmin=None, ymin=None, xmax=None, ymax=None):
skips = np.hstack((np.array([0]),points[:,2]))
xys = np.vstack((np.zeros((1,2)),np.cumsum(points[:,:2],axis=0)))
xys[:,:2] -= xys[:,:2].mean(axis=0)
# xys = points[:,:2]
xs=[]
ys=[]
x=[]
y=[]
for xy,s in zip(xys, skips):
if s:
if len(x) > 1:
xs.append(x)
ys.append(y)
x=[]
y=[]
else:
x.append(xy[0])
y.append(xy[1])
for x,y in zip(xs, ys):
pl.plot(x, y, 'k-')
if xmin is None:
xmin,ymin = xys.min(axis=0)
xmax,ymax = xys.max(axis=0)
ax = pl.gca()
ax.set_xlim(xmin, xmax)
ax.set_ylim(ymin, ymax)
ax.invert_yaxis()
ax.set_xticks([])
ax.set_yticks([])
示例8: emit
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import cumsum [as 別名]
def emit(self, readouts):
"""
Single step
:param readouts: output of hidden layer [batch_size,get_dim('inputs')]
"""
mean, sigma, corr, weight, penup = self.components(readouts)
mix_dim = self.mix_dim # get_dim('mix')
batch_size = readouts.shape[0]
nr = self.theano_rng.normal(
size=(batch_size, mix_dim, 2),
avg=0., std=1.) #, dtype=floatX)
c = (1 - T.sqrt(1-corr**2))/(corr + self.epsilon)
c = c.dimshuffle((0, 1, 'x')) # same for x and y
nr = nr + nr[:,:,::-1]*c # x+c*y and y + c*x
nr = nr / T.sqrt(1+c**2)
nr = nr * sigma
nr = nr + mean
# If I dont do dtype=floatX in the next line I get an error
weight = self.theano_rng.multinomial(pvals=weight, dtype=floatX)
# an alternative is the following code:
# right_boundry = T.cumsum(weight,axis=1) # [...,1]
# left_boundry = right_boundry - weight # [0,...]
# un0 = self.theano_rng.uniform(size=(batch_size,)).dimshuffle((0, 'x'))
# weight = T.cast(left_boundry <= un0, floatX) * \
# T.cast(un0 < right_boundry, floatX) # 1 only in one bin
xy = nr * weight[:,:,None] # [batch_size,mix_dim,2]
xy = xy.sum(axis=1) # [batch_size,2]
un = self.theano_rng.uniform(size=(batch_size, 1)) #, dtype=floatX)
penup = T.cast(un < penup, floatX) # .astype(floatX) # [batch_size,1]
res = T.concatenate([xy, penup], axis=1)
return res
示例9: set_rest_ref_matrix
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import cumsum [as 別名]
def set_rest_ref_matrix(self):
ref_positions = T.cumsum(T.concatenate((T.stack(0), self.number_of_points_per_surface_T[:-1] + 1)))
ref_points = T.repeat(self.surface_points[ref_positions], self.number_of_points_per_surface_T, axis=0)
rest_mask = T.ones(T.stack(self.surface_points.shape[0]), dtype='int16')
rest_mask = T.set_subtensor(rest_mask[ref_positions], 0)
rest_points = self.surface_points[T.nonzero(rest_mask)[0]]
return [ref_points, rest_points, rest_mask, T.nonzero(rest_mask)[0]]
示例10: geomav
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import cumsum [as 別名]
def geomav(x, *args, **kwargs):
x = x[0]
if len(x) == 0:
return np.zeros(600)
res = np.cumsum(utils.norm_geometric_average(utils.cdf_to_pdf(x)))
return res
示例11: prodav
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import cumsum [as 別名]
def prodav(x, *args, **kwargs):
x = x[0]
if len(x) == 0:
return np.zeros(600)
return np.cumsum(utils.norm_prod(utils.cdf_to_pdf(x)))
示例12: weighted_geom_no_entr
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import cumsum [as 別名]
def weighted_geom_no_entr(prediction_matrix, average, eps=1e-14, expert_weights=None, *args, **kwargs):
if len(prediction_matrix.flatten()) == 0:
return np.zeros(600)
weights = generate_information_weight_matrix(prediction_matrix, average, expert_weights=expert_weights, use_entropy=False, *args, **kwargs)
assert np.isfinite(weights).all()
pdf = utils.cdf_to_pdf(prediction_matrix)
x_log = np.log(pdf)
x_log[pdf<=0] = np.log(eps)
# Compute the mean
geom_av_log = np.sum(x_log * weights, axis=(0,1)) / (np.sum(weights, axis=(0,1)) + eps)
geom_av_log = geom_av_log - np.max(geom_av_log) # stabilizes rounding errors?
geom_av = np.exp(geom_av_log)
res = np.cumsum(geom_av/np.sum(geom_av))
return res
示例13: weighted_geom_method
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import cumsum [as 別名]
def weighted_geom_method(prediction_matrix, average, eps=1e-14, expert_weights=None, *args, **kwargs):
if len(prediction_matrix.flatten()) == 0:
return np.zeros(600)
weights = generate_information_weight_matrix(prediction_matrix, average, expert_weights=expert_weights, *args, **kwargs)
assert np.isfinite(weights).all()
pdf = utils.cdf_to_pdf(prediction_matrix)
x_log = np.log(pdf)
x_log[pdf<=0] = np.log(eps)
# Compute the mean
geom_av_log = np.sum(x_log * weights, axis=(0,1)) / (np.sum(weights, axis=(0,1)) + eps)
geom_av_log = geom_av_log - np.max(geom_av_log) # stabilizes rounding errors?
geom_av = np.exp(geom_av_log)
res = np.cumsum(geom_av/np.sum(geom_av))
return res
示例14: build_sampling_function
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import cumsum [as 別名]
def build_sampling_function(self, seed=1234):
from .utils import Timer
from theano.sandbox.rng_mrg import MRG_RandomStreams as RandomStreams
rng = np.random.RandomState(seed)
theano_rng = RandomStreams(rng.randint(2**30))
# Build theano function
# $X$: batch of inputs (flatten images)
input = T.matrix('input')
# $o_d$: index of d-th dimension in the ordering.
mask_o_d = T.matrix('mask_o_d')
# $o_{<d}$: indices of the d-1 first dimensions in the ordering.
mask_o_lt_d = T.matrix('mask_o_lt_d')
# Prepare input
X = input*mask_o_lt_d
if self.nb_channels == 2:
X = T.concatenate([X, mask_o_lt_d], axis=1)
output = T.nnet.sigmoid(self.get_output(X))
# output = self.fprop(input, mask_o_lt_d)
probs = T.sum(output*mask_o_d, axis=1)
bits = theano_rng.binomial(p=probs, size=probs.shape, n=1, dtype=theano.config.floatX)
sample_bit_plus = theano.function([input, mask_o_d, mask_o_lt_d], [bits, probs])
def _sample(nb_samples, return_probs=False, ordering_seed=1234):
rng = np.random.RandomState(ordering_seed)
D = int(np.prod(self.image_shape))
ordering = np.arange(D)
rng.shuffle(ordering)
with Timer("Generating {} samples from ConvDeepNADE".format(nb_samples)):
o_d = np.zeros((D, D), dtype=theano.config.floatX)
o_d[np.arange(D), ordering] = 1
o_lt_d = np.cumsum(o_d, axis=0)
o_lt_d[1:] = o_lt_d[:-1]
o_lt_d[0, :] = 0
samples = np.zeros((nb_samples, D), dtype="float32")
samples_probs = np.zeros((nb_samples, D), dtype="float32")
for d, bit in enumerate(ordering):
if d % 100 == 0:
print(d)
bits, probs = sample_bit_plus(samples, np.tile(o_d[d], (nb_samples, 1)), np.tile(o_lt_d[d], (nb_samples, 1)))
samples[:, bit] = bits
samples_probs[:, bit] = probs
if return_probs:
return samples, samples_probs
return samples
return _sample