本文整理匯總了Python中theano.tensor.concatenate方法的典型用法代碼示例。如果您正苦於以下問題:Python tensor.concatenate方法的具體用法?Python tensor.concatenate怎麽用?Python tensor.concatenate使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類theano.tensor
的用法示例。
在下文中一共展示了tensor.concatenate方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: step
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import concatenate [as 別名]
def step(self, word,h_tm1,c_tm1,x):
#{{{
H=x;
input_length=x.shape[0];
C=T.repeat(c_tm1.reshape((1,-1)),input_length,axis=0);
_HC=K.concatenate([H,C]);
energy=T.dot(_HC,self.W_A.reshape((-1,1)))+self.b_A;
energy=K.softmax(energy.reshape((1,-1)));
x=(H*energy.reshape((-1,1))).sum(axis=0)
#combine glimpsed with word;
combine=K.concatenate([x,word]);
combined=K.dot(combine,self.W_combine)+self.b_combine;
#original LSTM step
h_t,c_t=super(AttentionLSTM,self).step_noBatch(combined,h_tm1,c_tm1);
return h_t,c_t
#}}}
示例2: ctc_update_log_p
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import concatenate [as 別名]
def ctc_update_log_p(skip_idxs, zeros, active, log_p_curr, log_p_prev):
active_skip_idxs = skip_idxs[(skip_idxs < active).nonzero()]
active_next = T.cast(T.minimum(
T.maximum(
active + 1,
T.max(T.concatenate([active_skip_idxs, [-1]])) + 2 + 1
), log_p_curr.shape[0]), 'int32')
common_factor = T.max(log_p_prev[:active])
p_prev = T.exp(log_p_prev[:active] - common_factor)
_p_prev = zeros[:active_next]
# copy over
_p_prev = T.set_subtensor(_p_prev[:active], p_prev)
# previous transitions
_p_prev = T.inc_subtensor(_p_prev[1:], _p_prev[:-1])
# skip transitions
_p_prev = T.inc_subtensor(_p_prev[active_skip_idxs + 2], p_prev[active_skip_idxs])
updated_log_p_prev = T.log(_p_prev) + common_factor
log_p_next = T.set_subtensor(
zeros[:active_next],
log_p_curr[:active_next] + updated_log_p_prev
)
return active_next, log_p_next
示例3: with_additional_nodes
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import concatenate [as 別名]
def with_additional_nodes(self, new_node_strengths, new_node_ids, new_node_states=None):
"""
Helper function to generate a new state with new nodes added.
Params:
new_node_strengths: Tensor of shape (n_batch, n_new_nodes)
new_node_ids: Tensor of shape (n_batch, n_new_nodes, num_node_ids)
new_node_states: (Optional) Tensor of shape (n_batch, n_new_nodes, node_state_size)
If not provided, will be zero
Returns: A new graph state with the changes
"""
if new_node_states is None:
new_node_states = T.zeros([self.n_batch, new_node_strengths.shape[1], self.node_state_size])
next_node_strengths = T.concatenate([self.node_strengths, new_node_strengths], 1)
next_node_ids = T.concatenate([self.node_ids, new_node_ids], 1)
next_node_states = T.concatenate([self.node_states, new_node_states], 1)
next_n_nodes = next_node_strengths.shape[1]
next_edge_strengths = pad_to(self.edge_strengths, [self.n_batch, next_n_nodes, next_n_nodes, self.num_edge_types])
cls = type(self)
return cls(next_node_strengths, next_node_ids, next_node_states, next_edge_strengths)
示例4: broadcast_concat
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import concatenate [as 別名]
def broadcast_concat(tensors, axis):
"""
Broadcast tensors together, then concatenate along axis
"""
ndim = tensors[0].ndim
assert all(t.ndim == ndim for t in tensors), "ndims don't match for broadcast_concat: {}".format(tensors)
broadcast_shapes = []
for i in range(ndim):
if i == axis:
broadcast_shapes.append(1)
else:
dim_size = next((t.shape[i] for t in tensors if not t.broadcastable[i]), 1)
broadcast_shapes.append(dim_size)
broadcasted_tensors = []
for t in tensors:
tile_reps = [bshape if t.broadcastable[i] else 1 for i,bshape in enumerate(broadcast_shapes)]
if all(rep is 1 for rep in tile_reps):
# Don't need to broadcast this tensor
broadcasted_tensors.append(t)
else:
broadcasted_tensors.append(T.tile(t, tile_reps))
return T.concatenate(broadcasted_tensors, axis)
示例5: cross
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import concatenate [as 別名]
def cross(x, y, axis=None):
ndim = x.ndim
assert x.ndim == y.ndim
if axis is None:
axis = ndim - 1
def _getindexslice(a, i):
return a[tuple([slice(i,i+1) if d == axis else slice(None)
for d in xrange(ndim)])]
x0 = _getindexslice(x, 0)
x1 = _getindexslice(x, 1)
x2 = _getindexslice(x, 2)
y0 = _getindexslice(y, 0)
y1 = _getindexslice(y, 1)
y2 = _getindexslice(y, 2)
res = T.concatenate((x1*y2 - x2*y1,
x2*y0 - x0*y2,
x0*y1 - x1*y0), axis=axis)
return res
示例6: _context_sensitive_shift
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import concatenate [as 別名]
def _context_sensitive_shift(self, inputs):
"""
Compute a buffer top representation by mixing buffer top and hidden state.
NB: This hasn't been an especially effective tool so far.
"""
assert self.use_tracking_lstm
buffer_top, tracking_hidden = inputs[2:4]
# Exclude the cell value from the computation.
tracking_hidden = tracking_hidden[:, :hidden_dim]
inp = T.concatenate([tracking_hidden, buffer_top], axis=1)
inp_dim = self._spec.word_embedding_dim + self.tracking_lstm_hidden_dim
layer = util.ReLULayer if self.context_sensitive_use_relu else util.Linear
return layer(inp, inp_dim, self._spec.model_dim, self._vs,
name="context_comb_unit", use_bias=True,
initializer=util.HeKaimingInitializer())
示例7: _make_rnn
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import concatenate [as 別名]
def _make_rnn(self, seq_length=4):
self.embedding_dim = embedding_dim = 3
self.vocab_size = vocab_size = 10
self.seq_length = seq_length
def compose_network(h_prev, inp, embedding_dim, model_dim, vs, name="compose"):
# Just add the two embeddings!
W = T.concatenate([T.eye(model_dim), T.eye(model_dim)], axis=0)
i = T.concatenate([h_prev, inp], axis=1)
return i.dot(W)
X = T.imatrix("X")
training_mode = T.scalar("training_mode")
vs = VariableStore()
embeddings = np.arange(vocab_size).reshape(
(vocab_size, 1)).repeat(embedding_dim, axis=1)
self.model = RNN(
embedding_dim, embedding_dim, vocab_size, seq_length, compose_network,
IdentityLayer, training_mode, None, vs,
X=X, make_test_fn=True, initial_embeddings=embeddings)
示例8: setUp
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import concatenate [as 別名]
def setUp(self):
if 'gpu' not in theano.config.device:
raise RuntimeError("Thin stack only defined for GPU usage")
self.embedding_dim = self.model_dim = 2
self.vocab_size = 5
self.seq_length = 5
self.batch_size = 2
self.num_classes = 2
spec = util.ModelSpec(self.model_dim, self.embedding_dim,
self.batch_size, self.vocab_size,
self.seq_length)
self.vs = vs = VariableStore()
def compose_network((c1, c2), *args, **kwargs):
W = vs.add_param("W", (self.model_dim * 2, self.model_dim))
b = vs.add_param("b", (self.model_dim,),
initializer=util.ZeroInitializer())
return T.dot(T.concatenate([c1, c2], axis=1), W) + b
示例9: __init__
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import concatenate [as 別名]
def __init__(self, prev_layers, axis=1):
"""
list of prev layers to concatenate
axis to concatenate
For tensor5, channel dimension is axis=2 (due to theano conv3d
convention). For image, axis=1
"""
assert (len(prev_layers) > 1)
super().__init__(prev_layers[0])
self._axis = axis
self._prev_layers = prev_layers
self._output_shape = self._input_shape.copy()
for prev_layer in prev_layers[1:]:
self._output_shape[axis] += prev_layer._output_shape[axis]
print('Concat the prev layer to [%s]' % ','.join(str(x) for x in self._output_shape))
示例10: get_output_for
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import concatenate [as 別名]
def get_output_for(self, input, init=False, **kwargs):
if input.ndim > 2:
# if the input has more than two dimensions, flatten it into a
# batch of feature vectors.
input = input.flatten(2)
activation = T.tensordot(input, self.W, [[1], [0]])
abs_dif = (T.sum(abs(activation.dimshuffle(0,1,2,'x') - activation.dimshuffle('x',1,2,0)),axis=2)
+ 1e6 * T.eye(input.shape[0]).dimshuffle(0,'x',1))
if init:
mean_min_abs_dif = 0.5 * T.mean(T.min(abs_dif, axis=2),axis=0)
abs_dif /= mean_min_abs_dif.dimshuffle('x',0,'x')
self.init_updates = [(self.log_weight_scale, self.log_weight_scale-T.log(mean_min_abs_dif).dimshuffle(0,'x'))]
f = T.sum(T.exp(-abs_dif),axis=2)
if init:
mf = T.mean(f,axis=0)
f -= mf.dimshuffle('x',0)
self.init_updates.append((self.b, -mf))
else:
f += self.b.dimshuffle('x',0)
return T.concatenate([input, f], axis=1)
示例11: build_encoder_bi
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import concatenate [as 別名]
def build_encoder_bi(tparams, options):
"""
build bidirectional encoder, given pre-computed word embeddings
"""
# word embedding (source)
embedding = tensor.tensor3('embedding', dtype='float32')
embeddingr = embedding[::-1]
x_mask = tensor.matrix('x_mask', dtype='float32')
xr_mask = x_mask[::-1]
# encoder
proj = get_layer(options['encoder'])[1](tparams, embedding, options,
prefix='encoder',
mask=x_mask)
projr = get_layer(options['encoder'])[1](tparams, embeddingr, options,
prefix='encoder_r',
mask=xr_mask)
ctx = tensor.concatenate([proj[0][-1], projr[0][-1]], axis=1)
return embedding, x_mask, ctx
# some utilities
示例12: param_init_gru
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import concatenate [as 別名]
def param_init_gru(options, params, prefix='gru', nin=None, dim=None):
"""
parameter init for GRU
"""
if nin == None:
nin = options['dim_proj']
if dim == None:
dim = options['dim_proj']
W = numpy.concatenate([norm_weight(nin,dim),
norm_weight(nin,dim)], axis=1)
params[_p(prefix,'W')] = W
params[_p(prefix,'b')] = numpy.zeros((2 * dim,)).astype('float32')
U = numpy.concatenate([ortho_weight(dim),
ortho_weight(dim)], axis=1)
params[_p(prefix,'U')] = U
Wx = norm_weight(nin, dim)
params[_p(prefix,'Wx')] = Wx
Ux = ortho_weight(dim)
params[_p(prefix,'Ux')] = Ux
params[_p(prefix,'bx')] = numpy.zeros((dim,)).astype('float32')
return params
示例13: infer_shape
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import concatenate [as 別名]
def infer_shape(self, node, in_shapes):
shape_a = in_shapes[0]
n = node.inputs[1]
axis = node.inputs[2]
if len(shape_a) == 1:
return [(n,)]
elif isinstance(axis, tensor.TensorConstant):
out_shape = (list(shape_a[0: axis.data.item()]) + [n] +
list(shape_a[axis.data + 1:]))
else:
l = len(shape_a)
shape_a = tensor.stack(shape_a)
out_shape = tensor.concatenate((shape_a[0: axis], [n],
shape_a[axis + 1:]))
n_splits = [1] * l
out_shape = tensor.split(out_shape, n_splits, l)
out_shape = [a[0] for a in out_shape]
return [out_shape]
示例14: DiagonalBiLSTM
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import concatenate [as 別名]
def DiagonalBiLSTM(name, input_dim, inputs):
"""
inputs.shape: (batch size, height, width, input_dim)
inputs.shape: (batch size, height, width, DIM)
"""
forward = DiagonalLSTM(name+'.Forward', input_dim, inputs)
backward = DiagonalLSTM(name+'.Backward', input_dim, inputs[:,:,::-1,:])[:,:,::-1,:]
batch_size = inputs.shape[0]
backward = T.concatenate([
T.zeros([batch_size, 1, WIDTH, DIM], dtype=theano.config.floatX),
backward[:, :-1, :, :]
], axis=1)
return forward + backward
# inputs.shape: (batch size, height, width, channels)
示例15: load_embeddings
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import concatenate [as 別名]
def load_embeddings(args):
lst = [ ]
vas = [ ]
with gzip.open(args.embedding) as fin:
for line in fin:
parts = line.strip().split()
w = parts[0]
e = numpy.array( [[ float(x) for x in parts[1:] ]],
dtype = theano.config.floatX )
lst.append(w)
vas.append(e)
lst.append("## UNK ##")
vas.append( numpy.zeros(vas[0].shape, dtype = theano.config.floatX) )
vocabx = dict([ (y,x) for x,y in enumerate(lst) ])
embeddings = numpy.concatenate(vas)
assert len(vocabx) == len(embeddings)
print "{} embedding loaded, size {}".format(embeddings.shape[0], embeddings.shape[1])
return vocabx, embeddings