當前位置: 首頁>>代碼示例>>Python>>正文


Python tensor.cast方法代碼示例

本文整理匯總了Python中theano.tensor.cast方法的典型用法代碼示例。如果您正苦於以下問題:Python tensor.cast方法的具體用法?Python tensor.cast怎麽用?Python tensor.cast使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在theano.tensor的用法示例。


在下文中一共展示了tensor.cast方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: ctc_update_log_p

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import cast [as 別名]
def ctc_update_log_p(skip_idxs, zeros, active, log_p_curr, log_p_prev):
    active_skip_idxs = skip_idxs[(skip_idxs < active).nonzero()]
    active_next = T.cast(T.minimum(
        T.maximum(
            active + 1,
            T.max(T.concatenate([active_skip_idxs, [-1]])) + 2 + 1
        ), log_p_curr.shape[0]), 'int32')

    common_factor = T.max(log_p_prev[:active])
    p_prev = T.exp(log_p_prev[:active] - common_factor)
    _p_prev = zeros[:active_next]
    # copy over
    _p_prev = T.set_subtensor(_p_prev[:active], p_prev)
    # previous transitions
    _p_prev = T.inc_subtensor(_p_prev[1:], _p_prev[:-1])
    # skip transitions
    _p_prev = T.inc_subtensor(_p_prev[active_skip_idxs + 2], p_prev[active_skip_idxs])
    updated_log_p_prev = T.log(_p_prev) + common_factor

    log_p_next = T.set_subtensor(
        zeros[:active_next],
        log_p_curr[:active_next] + updated_log_p_prev
    )
    return active_next, log_p_next 
開發者ID:lingluodlut,項目名稱:Att-ChemdNER,代碼行數:26,代碼來源:theano_backend.py

示例2: make_node

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import cast [as 別名]
def make_node(self, x, ilist):
        x_ = as_cuda_ndarray_variable(x)
        ilist_ = gpu_contiguous(T.cast(ilist, dtype=config.floatX)) # T.as_tensor_variable(ilist)
        #if ilist_.type.dtype[:3] not in ('int', 'uin'):
        #    raise TypeError('index must be integers')
        if ilist_.type.ndim != 1:
            raise TypeError('index must be vector')
        if x_.type.ndim == 0:
            raise TypeError('cannot index into a scalar')

        # # c code suppose it is int64
        # if x.ndim in [1, 2, 3] and ilist_.dtype in [
        #     'int8', 'int16', 'int32', 'uint8', 'uint16', 'uint32']:
        #     ilist_ = tensor.cast(ilist_, 'int64')

        bcast = (ilist_.broadcastable[0],) + x_.broadcastable[1:]
        return theano.gof.Apply(self, [x_, ilist_],
                                [CudaNdarrayType(dtype=x.dtype,
                                                 broadcastable=bcast)()]) 
開發者ID:stanfordnlp,項目名稱:spinn,代碼行數:21,代碼來源:cuda.py

示例3: adadelta

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import cast [as 別名]
def adadelta(self, param, grad, updates, sample_idx=None, epsilon=1e-6):
        v1 = np.float32(self.decay)
        v2 = np.float32(1.0 - self.decay)
        acc = theano.shared(param.get_value(borrow=False) * 0., borrow=True)
        upd = theano.shared(param.get_value(borrow=False) * 0., borrow=True)
        if sample_idx is None:
            acc_new = acc + grad ** 2
            updates[acc] = acc_new
            grad = T.sqrt(upd + epsilon) * grad
            upd_new = v1 * upd + v2 * grad ** 2
            updates[upd] = upd_new
        else:
            acc_s = acc[sample_idx]
            acc_new = acc_s + grad ** 2
            updates[acc] = T.set_subtensor(acc_s, acc_new)
            upd_s = upd[sample_idx]
            upd_new = v1 * upd_s + v2 * grad ** 2
            updates[upd] = T.set_subtensor(upd_s, upd_new)
            grad = T.sqrt(upd_s + epsilon) * grad
        gradient_scaling = T.cast(T.sqrt(acc_new + epsilon), theano.config.floatX)
        return grad / gradient_scaling 
開發者ID:mquad,項目名稱:hgru4rec,代碼行數:23,代碼來源:hgru4rec.py

示例4: get_monitoring_channels

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import cast [as 別名]
def get_monitoring_channels(self, data):
        if data is None:
            m = 100
        else:
            m = data.shape[0]
        n = self.mlp.get_input_space().get_total_dimension()
        noise = self.get_noise((m, n))
        rval = OrderedDict()

        try:
            rval.update(self.mlp.get_monitoring_channels((noise, None)))
        except Exception:
            warnings.warn("something went wrong with generator.mlp's monitoring channels")

        if  self.monitor_ll:
            rval['ll'] = T.cast(self.ll(data, self.ll_n_samples, self.ll_sigma),
                                        theano.config.floatX).mean()
            rval['nll'] = -rval['ll']
        return rval 
開發者ID:goodfeli,項目名稱:adversarial,代碼行數:21,代碼來源:__init__.py

示例5: adam_updates

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import cast [as 別名]
def adam_updates(params, cost, lr=0.001, mom1=0.9, mom2=0.999):
    updates = []
    grads = T.grad(cost, params)
    t = th.shared(np.cast[th.config.floatX](1.))
    for p, g in zip(params, grads):
        v = th.shared(np.cast[th.config.floatX](p.get_value() * 0.))
        mg = th.shared(np.cast[th.config.floatX](p.get_value() * 0.))
        v_t = mom1*v + (1. - mom1)*g
        mg_t = mom2*mg + (1. - mom2)*T.square(g)
        v_hat = v_t / (1. - mom1 ** t)
        mg_hat = mg_t / (1. - mom2 ** t)
        g_t = v_hat / T.sqrt(mg_hat + 1e-8)
        p_t = p - lr * g_t
        updates.append((v, v_t))
        updates.append((mg, mg_t))
        updates.append((p, p_t))
    updates.append((t, t+1))
    return updates 
開發者ID:djsutherland,項目名稱:opt-mmd,代碼行數:20,代碼來源:nn.py

示例6: get_output_for

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import cast [as 別名]
def get_output_for(self, input, deterministic=False, **kwargs):
        if deterministic:
            norm_features = (input-self.avg_batch_mean.dimshuffle(*self.dimshuffle_args)) / T.sqrt(1e-6 + self.avg_batch_var).dimshuffle(*self.dimshuffle_args)
        else:
            batch_mean = T.mean(input,axis=self.axes_to_sum).flatten()
            centered_input = input-batch_mean.dimshuffle(*self.dimshuffle_args)
            batch_var = T.mean(T.square(centered_input),axis=self.axes_to_sum).flatten()
            batch_stdv = T.sqrt(1e-6 + batch_var)
            norm_features = centered_input / batch_stdv.dimshuffle(*self.dimshuffle_args)

            # BN updates
            new_m = 0.9*self.avg_batch_mean + 0.1*batch_mean
            new_v = 0.9*self.avg_batch_var + T.cast((0.1*input.shape[0])/(input.shape[0]-1),th.config.floatX)*batch_var
            self.bn_updates = [(self.avg_batch_mean, new_m), (self.avg_batch_var, new_v)]

        if hasattr(self, 'g'):
            activation = norm_features*self.g.dimshuffle(*self.dimshuffle_args)
        else:
            activation = norm_features
        if hasattr(self, 'b'):
            activation += self.b.dimshuffle(*self.dimshuffle_args)

        return self.nonlinearity(activation) 
開發者ID:djsutherland,項目名稱:opt-mmd,代碼行數:25,代碼來源:nn.py

示例7: make_node

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import cast [as 別名]
def make_node(self, acts, labels, input_lengths):
    # Unless specified, assume all sequences have full sequence length, i.e. acts_.shape[0]
    if input_lengths == None:
      input_lengths = T.cast(acts.shape[0], dtype="int32") * T.ones_like(acts[0,:,0], dtype=np.int32)

    # acts.shape = [seqLen, batchN, outputUnit]
    if acts.dtype != "float32":
      raise Exception("acts must be float32 instead of %s" % acts.dtype)
    # labels.shape = [batchN, labelLen]
    if labels.dtype != "int32":
      raise Exception("labels must be int32 instead of %s" % labels.dtype)
    # input_lengths.shape = [batchN]
    if input_lengths.dtype != "int32":
      raise Exception("input_lengths must be int32 instead of %s" % input_lengths.dtype)

    applyNode = theano.Apply(self, inputs=[acts, input_lengths, labels], outputs=[self.costs, self.gradients])

    # Return only the cost. Gradient will be returned by grad()
    self.default_output = 0 

    return applyNode 
開發者ID:mcf06,項目名稱:theano_ctc,代碼行數:23,代碼來源:ctc_base.py

示例8: get_cost_updates

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import cast [as 別名]
def get_cost_updates(self, lr=0.1, persistent=None, k=1):
        pre_sigmoid_ph, ph_mean, ph_sample = self.sample_h_given_v(self.input)
        if persistent is None:
            chain_start = ph_sample
        else:
            chain_start = persistent
        ([pre_sigmoid_nvs,nv_means,nv_samples,pre_sigmoid_nhs,nh_means,nh_samples],updates) = \
            theano.scan(self.gibbs_step, outputs_info=[None, None, None, None, None, chain_start],n_steps=k,name="gibbs_step")
        chain_end = nv_samples[-1]
        cost = T.mean(self.free_energy(self.input)) - T.mean(self.free_energy(chain_end))
        gparams = T.grad(cost, self.params, consider_constant=[chain_end])
        for gparam, param in zip(gparams, self.params):
            updates[param] = param - gparam * T.cast(lr,dtype=theano.config.floatX)
        if persistent:
            updates[persistent] = nh_samples[-1]
            monitoring_cost = self.get_pseudo_likelihood_cost(updates)  
        else:
            monitoring_cost = self.get_reconstruction_cost(updates,pre_sigmoid_nvs[-1])
        return monitoring_cost, updates 
開發者ID:iamshang1,項目名稱:Projects,代碼行數:21,代碼來源:rbm_pretraining.py

示例9: make_node

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import cast [as 別名]
def make_node(self, x, y, p_data, p_ind, p_ptr, p_ncols):
        x = tensor.as_tensor_variable(x)
        y = tensor.as_tensor_variable(y)
        p_data = tensor.as_tensor_variable(p_data)
        p_ind = tensor.as_tensor_variable(p_ind)
        p_ptr = tensor.as_tensor_variable(p_ptr)
        p_ncols = tensor.as_tensor_variable(p_ncols)

        assert p_ncols.dtype == 'int32'

        dtype_out = scalar.upcast(x.type.dtype, y.type.dtype,
                                  p_data.type.dtype)
        dot_out = scalar.upcast(x.type.dtype, y.type.dtype)

        # We call blas ?dot function that take only param of the same type
        x = tensor.cast(x, dot_out)
        y = tensor.cast(y, dot_out)

        return gof.Apply(self, [x, y, p_data, p_ind, p_ptr, p_ncols], [
            tensor.tensor(dtype=dtype_out, broadcastable=(False,)),
            tensor.tensor(dtype=p_ind.type.dtype, broadcastable=(False,)),
            tensor.tensor(dtype=p_ptr.type.dtype, broadcastable=(False,))
        ]) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:25,代碼來源:opt.py

示例10: test_stabilize_log_softmax

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import cast [as 別名]
def test_stabilize_log_softmax():
    mode = theano.compile.mode.get_default_mode()
    mode = mode.including('local_log_softmax', 'specialize')

    x = matrix()
    y = softmax(x)
    z = theano.tensor.log(y)

    f = theano.function([x], z, mode=mode)
    assert hasattr(f.maker.fgraph.outputs[0].tag, 'trace')

    # check that the softmax has been optimized out
    for node in f.maker.fgraph.toposort():
        assert not isinstance(node.op, y.owner.op.__class__)

    # call the function so debug mode can verify the optimized
    # version matches the unoptimized version
    rng = numpy.random.RandomState([2012, 8, 22])
    f(numpy.cast[config.floatX](rng.randn(2, 3))) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:21,代碼來源:test_nnet.py

示例11: make_node

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import cast [as 別名]
def make_node(self, x, ilist):
        x_ = as_cuda_ndarray_variable(x)
        ilist_ = tensor.as_tensor_variable(ilist)
        if ilist_.type.dtype[:3] not in ('int', 'uin'):
            raise TypeError('index must be integers')
        if ilist_.type.ndim != 1:
            raise TypeError('index must be vector')
        if x_.type.ndim == 0:
            raise TypeError('cannot index into a scalar')

        # c code suppose it is int64
        if x.ndim in [1, 2, 3] and ilist_.dtype in [
            'int8', 'int16', 'int32', 'uint8', 'uint16', 'uint32']:
            ilist_ = tensor.cast(ilist_, 'int64')

        bcast = (ilist_.broadcastable[0],) + x_.broadcastable[1:]
        return Apply(self, [x_, ilist_],
                     [CudaNdarrayType(dtype=x.dtype,
                                      broadcastable=bcast)()]) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:21,代碼來源:basic_ops.py

示例12: local_gpu_crossentorpy_softmax_argmax_1hot_with_bias

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import cast [as 別名]
def local_gpu_crossentorpy_softmax_argmax_1hot_with_bias(node):
    if isinstance(node.op, tensor.nnet.CrossentropySoftmaxArgmax1HotWithBias):
        x, b, y = node.inputs
        if x.owner and isinstance(x.owner.op, HostFromGpu):
            gpu_x, = x.owner.inputs
            # if y is a cast to integers, we can go to the underlying
            # thing if we want, since this gpu op will cast to integers
            # internally anyway
            int_cast_ops = (
                tensor.basic._convert_to_int32,
                tensor.basic._convert_to_int8,
                tensor.basic._convert_to_int16,
                tensor.basic._convert_to_int64)
            while y.owner and y.owner.op in int_cast_ops:
                y = y.owner.inputs[0]
            gpu_nll, gpu_sm, gpu_am = \
                GpuCrossentropySoftmaxArgmax1HotWithBias()(
                    gpu_x,
                    as_cuda_ndarray_variable(b),
                    as_cuda_ndarray_variable(cast(y, 'float32')))
            am_dtype = node.outputs[2].type.dtype
            return [host_from_gpu(gpu_nll),
                    host_from_gpu(gpu_sm),
                    cast(host_from_gpu(gpu_am), am_dtype)]
    return False 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:27,代碼來源:opt.py

示例13: test_elemwise_comparaison_cast

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import cast [as 別名]
def test_elemwise_comparaison_cast():
    """
    test if an elemwise comparaison followed by a cast to float32 are
    pushed to gpu.
    """

    a = tensor.fmatrix()
    b = tensor.fmatrix()
    av = theano._asarray(numpy.random.rand(4, 4), dtype='float32')
    bv = numpy.ones((4, 4), dtype='float32')

    for g, ans in [(tensor.lt, av < bv), (tensor.gt, av > bv),
                   (tensor.le, av <= bv), (tensor.ge, av >= bv)]:

        f = pfunc([a, b], tensor.cast(g(a, b), 'float32'), mode=mode_with_gpu)

        out = f(av, bv)
        assert numpy.all(out == ans)
        assert any([isinstance(node.op, cuda.GpuElemwise)
                    for node in f.maker.fgraph.toposort()]) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:22,代碼來源:test_basic_ops.py

示例14: make_node

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import cast [as 別名]
def make_node(self, x, ilist):
        ctx_name = infer_context_name(x, ilist)
        x_ = as_gpuarray_variable(x, ctx_name)

        ilist__ = tensor.as_tensor_variable(ilist)
        if ilist__.type.dtype[:3] not in ('int', 'uin'):
            raise TypeError('index must be integers')
        if ilist__.type.dtype != 'int64':
            ilist__ = tensor.cast(ilist__, 'int64')

        ilist_ = as_gpuarray_variable(ilist__, ctx_name)

        if ilist_.type.dtype != 'int64':
            raise TypeError('index must be int64')
        if ilist_.type.ndim != 1:
            raise TypeError('index must be a vector')
        if x_.type.ndim == 0:
            raise TypeError('cannot index into a scalar')

        bcast = ilist_.broadcastable + x_.broadcastable[1:]
        return gof.Apply(self, [x_, ilist_],
                         [GpuArrayType(dtype=x.dtype,
                                       context_name=ctx_name,
                                       broadcastable=bcast)()]) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:26,代碼來源:subtensor.py

示例15: errors4one

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import cast [as 別名]
def errors4one(self, z, out, weight=None, distLabelType='12C'):
	distBins = config.distCutoffs[distLabelType]
	label8 = DistanceUtils.LabelsOfOneDistance(config.ContactDefinition, distBins)
	label15 = DistanceUtils.LabelsOfOneDistance(config.InteractionLimit, distBins)

	z3C = T.cast( T.ge(z, label8), 'int32') + T.cast( T.ge(z, label15), 'int32')
	o3C = T.cast( T.ge(out, label8), 'int32') + T.cast( T.ge(out, label15), 'int32')

	if weight is not None:
            err = T.sum( T.mul(weight, T.neq(o3C, z3C) ) )*1./T.sum(weight)
	else:
            err = T.mean( T.neq(o3C , z3C) ) 

	## err is s scalar, convert it to a tensor with ndim=1
	return T.stack([err] )

    ## this function returns a vector of errors, the size of this vector is equal to the sum of ValueDims for all the responses 
開發者ID:j3xugit,項目名稱:RaptorX-Contact,代碼行數:19,代碼來源:Model4DistancePrediction.py


注:本文中的theano.tensor.cast方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。