本文整理匯總了Python中theano.tensor.batched_dot方法的典型用法代碼示例。如果您正苦於以下問題:Python tensor.batched_dot方法的具體用法?Python tensor.batched_dot怎麽用?Python tensor.batched_dot使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類theano.tensor
的用法示例。
在下文中一共展示了tensor.batched_dot方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: quadratic_loss
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import batched_dot [as 別名]
def quadratic_loss(mx, Sx, target, Q, *args, **kwargs):
'''
Quadratic penalty function c(x) = (||x-target||_Q)^2
'''
if Sx is None:
# deterministic case
if mx.ndim == 1:
mx = mx[None, :]
delta = mx-target
deltaQ = delta.dot(Q)
cost = tt.batched_dot(deltaQ, delta)
return cost
else:
# stochastic case (moment matching)
delta = mx-target
deltaQ = delta.T.dot(Q)
SxQ = Sx.dot(Q)
m_cost = tt.sum(Sx*Q) + deltaQ.dot(delta)
s_cost = 2*tt.sum(SxQ.dot(SxQ)) + 4*deltaQ.dot(Sx).dot(deltaQ.T)
return m_cost, s_cost
示例2: get_output_for
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import batched_dot [as 別名]
def get_output_for(self, inputs, attention_only=False, **kwargs):
# inputs[0]: B x N x D
# inputs[1]: B x Q x D
# inputs[2]: B x N x Q / B x Q x N
# self.mask: B x Q
if self.transpose: M = inputs[2].dimshuffle((0,2,1))
else: M = inputs[2]
alphas = T.nnet.softmax(T.reshape(M, (M.shape[0]*M.shape[1],M.shape[2])))
alphas_r = T.reshape(alphas, (M.shape[0],M.shape[1],M.shape[2]))* \
self.mask[:,np.newaxis,:] # B x N x Q
alphas_r = alphas_r/alphas_r.sum(axis=2)[:,:,np.newaxis] # B x N x Q
q_rep = T.batched_dot(alphas_r, inputs[1]) # B x N x D
return eval(self.gating_fn)(inputs[0],q_rep)
示例3: cosine_similarity
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import batched_dot [as 別名]
def cosine_similarity(x, y, eps=1e-6):
r"""
Cosine similarity between a vector and each row of a base matrix.
Parameters
----------
x: a 3D Theano variable
Vector to compare to each row of the matrix y.
y: a 3D Theano variable
Matrix to be compared to
eps: float
Precision of the operation (necessary for differentiability).
Return
------
z: a 3D Theano variable
A vector whose components are the cosine similarities
between x and each row of y.
"""
z = T.batched_dot(x, y.dimshuffle(0, 2, 1))
z /= T.sqrt(T.sum(x * x, axis=2).dimshuffle(0, 1, 'x') * T.sum(y * y, axis=2).dimshuffle(0, 'x', 1) + eps)
return z
示例4: process
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import batched_dot [as 別名]
def process(self, gstate, ref_matrix, dropout_masks=Ellipsis):
"""
Process a direct ref matrix and update the state accordingly. Each node runs a GRU step
with previous state from the node state and input from the matrix.
Params:
gstate: A GraphState giving the current state
ref_matrix: A tensor of the form (n_batch, num_node_ids, input_width)
"""
if dropout_masks is Ellipsis:
dropout_masks = None
append_masks = False
else:
append_masks = True
# To process the input, we need to map from node id to node index
# We can do this using the gstate.node_ids, of shape (n_batch, n_nodes, num_node_ids)
prepped_input_vector = T.batched_dot(gstate.node_ids, ref_matrix)
# prepped_input_vector is of shape (n_batch, n_nodes, input_width)
# gstate.node_states is of shape (n_batch, n_nodes, node_state_width)
# so they match nicely
full_input = T.concatenate([gstate.node_ids, prepped_input_vector], 2)
# we flatten to apply GRU
flat_input = full_input.reshape([-1, self._input_width + self._graph_spec.num_node_ids])
flat_state = gstate.node_states.reshape([-1, self._graph_spec.node_state_size])
new_flat_state, dropout_masks = self._update_gru.step(flat_input, flat_state, dropout_masks)
new_node_states = new_flat_state.reshape(gstate.node_states.shape)
new_gstate = gstate.with_updates(node_states=new_node_states)
if append_masks:
return new_gstate, dropout_masks
else:
return new_gstate
示例5: cosine_similarity
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import batched_dot [as 別名]
def cosine_similarity(x, y, eps=1e-6):
z = T.batched_dot(x, y.dimshuffle(0, 2, 1))
z /= T.sqrt(T.sum(x * x, axis=2).dimshuffle(0, 1, 'x') * T.sum(y * y, axis=2).dimshuffle(0, 'x', 1) + eps)
return z
示例6: compute_psi2
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import batched_dot [as 別名]
def compute_psi2(lls, lsf, z, input_means, input_vars):
ls = T.exp(lls)
sf = T.exp(lsf)
b = ls / casting(2.0)
term_1 = T.prod(T.sqrt(b / (b + input_vars)), 1)
scale = T.sqrt(4 * (2 * b[ None, : ] + 0 * input_vars))
scaled_z = z[ None, : , : ] / scale[ : , None , : ]
scaled_z_minus_m = scaled_z
r2b = T.sum(scaled_z_minus_m**2, 2)[ :, None, : ] + T.sum(scaled_z_minus_m**2, 2)[ :, : , None ] - \
2 * T.batched_dot(scaled_z_minus_m, np.transpose(scaled_z_minus_m, [ 0, 2, 1 ]))
term_2 = T.exp(-r2b)
scale = T.sqrt(4 * (2 * b[ None, : ] + 2 * input_vars))
scaled_z = z[ None, : , : ] / scale[ : , None , : ]
scaled_m = input_means / scale
scaled_m = T.tile(scaled_m[ : , None, : ], [ 1, z.shape[ 0 ], 1])
scaled_z_minus_m = scaled_z - scaled_m
r2b = T.sum(scaled_z_minus_m**2, 2)[ :, None, : ] + T.sum(scaled_z_minus_m**2, 2)[ :, : , None ] + \
2 * T.batched_dot(scaled_z_minus_m, np.transpose(scaled_z_minus_m, [ 0, 2, 1 ]))
term_3 = T.exp(-r2b)
psi2_computed = sf**casting(2.0) * term_1[ :, None, None ] * term_2 * term_3
return T.transpose(psi2_computed, [ 1, 2, 0 ])
示例7: batched_gram5d
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import batched_dot [as 別名]
def batched_gram5d(self, fmap):
# (layer, batch, featuremaps, height*width)
fmap=fmap.flatten(ndim=4)
# (layer*batch, featuremaps, height*width)
fmap2=fmap.reshape((-1, fmap.shape[-2], fmap.shape[-1]))
# The T.prod term can't be taken outside as a T.mean in style_loss(), since the width and height of the image might vary
return T.batched_dot(fmap2, fmap2.dimshuffle(0,2,1)).reshape(fmap.shape)/T.prod(fmap.shape[-2:])
示例8: batched_gram
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import batched_dot [as 別名]
def batched_gram(self, fmap):
# (batch, featuremaps, height*width)
fmap=fmap.flatten(ndim=3)
# The T.prod term can't be taken outside as a T.mean in style_loss(), since the width and height of the image might vary
if self.net_type == 0:
return T.batched_dot(fmap, fmap.dimshuffle(0,2,1))/T.prod(fmap.shape[-2:])
elif self.net_type == 1:
return T.batched_dot(fmap, fmap.dimshuffle(0,2,1))/T.prod(fmap.shape[-1])
示例9: LayerNormalization
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import batched_dot [as 別名]
def LayerNormalization(x, gamma, mask, estimated_mean=0.0, estimated_var=1.0):
assert x.ndim == 3 or x.ndim == 2
if x.ndim == 3:
x_mean = T.mean(x, axis=2).dimshuffle(0, 1, 'x')
x_var = T.var(x, axis=2).dimshuffle(0, 1, 'x')
return gamma*((x - x_mean) / T.sqrt(x_var+1e-7)), x_mean[0, 0], x_var[0, 0]
elif x.ndim == 2:
x_mean = T.mean(x, axis=1).dimshuffle(0, 'x')
x_var = T.var(x, axis=1).dimshuffle(0, 'x')
return gamma*((x - x_mean) / T.sqrt(x_var+1e-7)), x_mean[0], x_var[0]
# Does theano.batched_dot. If last_axis is on it will loop over the last axis, otherwise it will loop over the first axis.
示例10: BatchedDot
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import batched_dot [as 別名]
def BatchedDot(x, y, last_axis=False):
if last_axis==False:
return T.batched_dot(x, y)
elif last_axis:
if x.ndim == 2:
shuffled_x = x.dimshuffle(1,0)
elif x.ndim == 3:
shuffled_x = x.dimshuffle(2,0,1)
elif x.ndim == 4:
shuffled_x = x.dimshuffle(3,0,1,2)
else:
raise ValueError('BatchedDot inputs must have between 2-4 dimensions, but x has ' + str(x.ndim) + ' dimensions')
if y.ndim == 2:
shuffled_y = y.dimshuffle(1,0)
elif y.ndim == 3:
shuffled_y = y.dimshuffle(2,0,1)
elif y.ndim == 4:
shuffled_y = y.dimshuffle(3,0,1,2)
else:
raise ValueError('BatchedDot inputs must have between 2-4 dimensions, but y has ' + str(y.ndim) + ' dimensions')
dot = T.batched_dot(shuffled_x, shuffled_y)
if dot.ndim == 2:
return dot.dimshuffle(1,0)
elif dot.ndim == 3:
return dot.dimshuffle(1,2,0)
elif dot.ndim == 4:
return dot.dimshuffle(1,2,3,0)
示例11: gaussian_chol
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import batched_dot [as 別名]
def gaussian_chol(mean, logvar, chol, sample=None):
if sample != None:
raise Exception('Not implemented')
diag = gaussian_diag(mean, logvar)
mask = T.shape_padleft(T.triu(T.ones_like(chol[0]), 1))
sample = diag.sample + T.batched_dot(diag.sample, chol * mask)
return RandomVariable(sample, diag.logp, diag.entr, mean=mean, logvar=logvar)
示例12: quadratic_saturating_loss
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import batched_dot [as 別名]
def quadratic_saturating_loss(mx, Sx, target, Q, *args, **kwargs):
'''
Squashing loss penalty function
c(x) = ( 1 - e^(-0.5*quadratic_loss(x, target)) )
'''
if Sx is None:
if mx.ndim == 1:
mx = mx[None, :]
delta = mx - target[None, :]
deltaQ = delta.dot(Q)
cost = 1.0 - tt.exp(-0.5*tt.batched_dot(deltaQ, delta))
return cost
else:
# stochastic case (moment matching)
delta = mx - target
SxQ = Sx.dot(Q)
EyeM = tt.eye(mx.shape[0])
IpSxQ = EyeM + SxQ
Ip2SxQ = EyeM + 2*SxQ
S1 = tt.dot(Q, matrix_inverse(IpSxQ))
S2 = tt.dot(Q, matrix_inverse(Ip2SxQ))
# S1 = solve(IpSxQ.T, Q.T).T
# S2 = solve(Ip2SxQ.T, Q.T).T
# mean
m_cost = -tt.exp(-0.5*delta.dot(S1).dot(delta))/tt.sqrt(det(IpSxQ))
# var
s_cost = tt.exp(
-delta.dot(S2).dot(delta))/tt.sqrt(det(Ip2SxQ)) - m_cost**2
return 1.0 + m_cost, s_cost
示例13: get_output_for
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import batched_dot [as 別名]
def get_output_for(self, input, **kwargs):
act = T.batched_dot(T.tensordot(input, self.V, axes = [1, 2]), input) + T.dot(input, self.W) + self.b.dimshuffle('x', 0)
return self.nonlinearity(act)
示例14: get_output_for
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import batched_dot [as 別名]
def get_output_for(self, inputs, **kwargs):
M = inputs[0]
u = inputs[1]
output = T.batched_dot(M, u)
if self.nonlinearity is not None:
output = self.nonlinearity(output)
return output
示例15: read
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import batched_dot [as 別名]
def read(self, w_tm1, M_t, **kwargs):
r_t = T.batched_dot(w_tm1, M_t)
return r_t.flatten(ndim=2)