本文整理匯總了Python中theano.tensor.argsort方法的典型用法代碼示例。如果您正苦於以下問題:Python tensor.argsort方法的具體用法?Python tensor.argsort怎麽用?Python tensor.argsort使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類theano.tensor
的用法示例。
在下文中一共展示了tensor.argsort方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: in_top_k
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import argsort [as 別名]
def in_top_k(predictions, targets, k):
'''Returns whether the `targets` are in the top `k` `predictions`
# Arguments
predictions: A tensor of shape batch_size x classess and type float32.
targets: A tensor of shape batch_size and type int32 or int64.
k: An int, number of top elements to consider.
# Returns
A tensor of shape batch_size and type int. output_i is 1 if
targets_i is within top-k values of predictions_i
'''
predictions_top_k = T.argsort(predictions)[:, -k:]
result, _ = theano.map(lambda prediction, target: any(equal(prediction, target)), sequences=[predictions_top_k, targets])
return result
# CONVOLUTIONS
示例2: rbf_kernel
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import argsort [as 別名]
def rbf_kernel(X0):
XY = T.dot(X0, X0.transpose())
x2 = T.reshape(T.sum(T.square(X0), axis=1), (X0.shape[0], 1))
X2e = T.repeat(x2, X0.shape[0], axis=1)
H = T.sub(T.add(X2e, X2e.transpose()), 2 * XY)
V = H.flatten()
# median distance
h = T.switch(T.eq((V.shape[0] % 2), 0),
# if even vector
T.mean(T.sort(V)[ ((V.shape[0] // 2) - 1) : ((V.shape[0] // 2) + 1) ]),
# if odd vector
T.sort(V)[V.shape[0] // 2])
h = T.sqrt(0.5 * h / T.log(X0.shape[0].astype('float32') + 1.0)) / 2.
Kxy = T.exp(-H / h ** 2 / 2.0)
neighbors = T.argsort(H, axis=1)[:, 1]
return Kxy, neighbors, h
示例3: k_max_pool
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import argsort [as 別名]
def k_max_pool(self, x, k):
"""
perform k-max pool on the input along the rows
input: theano.tensor.tensor4
k: theano.tensor.iscalar
the k parameter
Returns:
4D tensor
"""
ind = T.argsort(x, axis = 3)
sorted_ind = T.sort(ind[:,:,:, -k:], axis = 3)
dim0, dim1, dim2, dim3 = sorted_ind.shape
indices_dim0 = T.arange(dim0).repeat(dim1 * dim2 * dim3)
indices_dim1 = T.arange(dim1).repeat(dim2 * dim3).reshape((dim1*dim2*dim3, 1)).repeat(dim0, axis=1).T.flatten()
indices_dim2 = T.arange(dim2).repeat(dim3).reshape((dim2*dim3, 1)).repeat(dim0 * dim1, axis = 1).T.flatten()
return x[indices_dim0, indices_dim1, indices_dim2, sorted_ind.flatten()].reshape(sorted_ind.shape)
示例4: errors_top_x
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import argsort [as 別名]
def errors_top_x(self, y, num_top=5):
if y.ndim != self.y_pred.ndim:
raise TypeError('y should have the same shape as self.y_pred',
('y', y.type, 'y_pred', self.y_pred.type))
if num_top != 5: print('val errors from top %d' % num_top) ############TOP 5 VERSION##########
# check if y is of the correct datatype
if y.dtype.startswith('int'):
# the T.neq operator returns a vector of 0s and 1s, where 1
# represents a mistake in prediction
y_pred_top_x = T.argsort(self.p_y_given_x, axis=1)[:, -num_top:]
y_top_x = y.reshape((y.shape[0], 1)).repeat(num_top, axis=1)
return T.mean(T.min(T.neq(y_pred_top_x, y_top_x).astype('int8'), axis=1))
else:
raise NotImplementedError()
示例5: errors_top_x
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import argsort [as 別名]
def errors_top_x(self, y, num_top=5):
if y.ndim != self.y_pred.ndim:
raise TypeError('y should have the same shape as self.y_pred',
('y', y.type, 'y_pred', self.y_pred.type))
if num_top != 5: print 'val errors from top %d' % num_top ############TOP 5 VERSION##########
# check if y is of the correct datatype
if y.dtype.startswith('int'):
# the T.neq operator returns a vector of 0s and 1s, where 1
# represents a mistake in prediction
y_pred_top_x = T.argsort(self.p_y_given_x, axis=1)[:, -num_top:]
y_top_x = y.reshape((y.shape[0], 1)).repeat(num_top, axis=1)
# return T.mean(T.min(
return T.neq(y_pred_top_x, y_top_x)
# , axis=1))
else:
raise NotImplementedError()
示例6: errors_top_x
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import argsort [as 別名]
def errors_top_x(self, y, num_top=5):
if y.ndim != self.y_pred.ndim:
raise TypeError('y should have the same shape as self.y_pred',
('y', y.type, 'y_pred', self.y_pred.type))
# check if y is of the correct datatype
if y.dtype.startswith('int'):
# the T.neq operator returns a vector of 0s and 1s, where 1
# represents a mistake in prediction
y_pred_top_x = T.argsort(self.p_y_given_x, axis=1)[:, -num_top:]
y_top_x = y.reshape((y.shape[0], 1)).repeat(num_top, axis=1)
return T.mean(T.min(T.neq(y_pred_top_x, y_top_x).astype('int8'), axis=1))
else:
raise NotImplementedError()