當前位置: 首頁>>代碼示例>>Python>>正文


Python tensor.argmax方法代碼示例

本文整理匯總了Python中theano.tensor.argmax方法的典型用法代碼示例。如果您正苦於以下問題:Python tensor.argmax方法的具體用法?Python tensor.argmax怎麽用?Python tensor.argmax使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在theano.tensor的用法示例。


在下文中一共展示了tensor.argmax方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: build_cost

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import argmax [as 別名]
def build_cost(logits, targets):
    """
    Build a classification cost function.
    """
    # Clip gradients coming from the cost function.
    logits = theano.gradient.grad_clip(
        logits, -1. * FLAGS.clipping_max_value, FLAGS.clipping_max_value)

    predicted_dist = T.nnet.softmax(logits)

    costs = T.nnet.categorical_crossentropy(predicted_dist, targets)
    cost = costs.mean()

    pred = T.argmax(logits, axis=1)
    acc = 1. - T.mean(T.cast(T.neq(pred, targets), theano.config.floatX))

    return cost, acc 
開發者ID:stanfordnlp,項目名稱:spinn,代碼行數:19,代碼來源:classifier.py

示例2: __init__

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import argmax [as 別名]
def __init__(self, input, n_in, n_out, W=None):

        self.input = input

        if W is None:
            self.W = theano.shared(
                    value = numpy.zeros(
                        (n_in, n_out),
                        dtype = theano.config.floatX),
                    name = 'W',
                    borrow = True
                )
        else:
            self.W = W

        self.s_y_given_x = T.dot(input, self.W)
        self.p_y_given_x = T.nnet.softmax(self.s_y_given_x) #+ self.b)
        self.pred = T.argmax(self.s_y_given_x, axis=1)

        self.params = [ self.W ] 
開發者ID:taolei87,項目名稱:text_convnet,代碼行數:22,代碼來源:model.py

示例3: on_epoch_end

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import argmax [as 別名]
def on_epoch_end(self, epoch, logs={}):
    if epoch % self.interval == 0:
      y_pred = self.model.predict(self.X_val, verbose=0)
      #print(np.sum(y_pred[:,1]))
      #y_true = np.argmax(self.y_val, axis=1)
      #y_pred = np.argmax(y_pred, axis=1)
      #print(y_true.shape, y_pred.shape)
      if self.mymil:
        score = roc_auc_score(self.y_val.max(axis=1), y_pred.max(axis=1))  
      else: score = roc_auc_score(self.y_val[:,1], y_pred[:,1])
      print("interval evaluation - epoch: {:d} - auc: {:.2f}".format(epoch, score))
      if score > self.auc:
        self.auc = score
        for f in os.listdir('./'):
          if f.startswith(self.filepath+'auc'):
            os.remove(f)
        self.model.save(self.filepath+'auc'+str(score)+'ep'+str(epoch)+'.hdf5') 
開發者ID:wentaozhu,項目名稱:deep-mil-for-whole-mammogram-classification,代碼行數:19,代碼來源:roc_auc.py

示例4: generative_sampling

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import argmax [as 別名]
def generative_sampling(self, seed, emb_data, sample_length):
        fruit = theano.shared(value=seed)

        def step(h_tm, y_tm):
            h_t = self.activation(T.dot(emb_data[y_tm], self.W) +
                                  T.dot(h_tm, self.U) + self.bh)
            y_t = T.nnet.softmax(T.dot(h_t, self.V) + self.by)
            y = T.argmax(y_t, axis=1)

            return h_t, y[0]

        [_, samples], _ = theano.scan(fn=step,
                                      outputs_info=[self.h0, fruit],
                                      n_steps=sample_length)

        get_samples = theano.function(inputs=[],
                                      outputs=samples)

        return get_samples() 
開發者ID:uyaseen,項目名稱:theano-recurrence,代碼行數:21,代碼來源:rnn.py

示例5: score_metrics

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import argmax [as 別名]
def score_metrics(out, target_var, weight_map, l2_loss=0):
    _EPSILON=1e-8

    out_flat = out.dimshuffle(1,0,2,3).flatten(ndim=2).dimshuffle(1,0)
    target_flat = target_var.dimshuffle(1,0,2,3).flatten(ndim=1)
    weight_flat = weight_map.dimshuffle(1,0,2,3).flatten(ndim=1)

    prediction = lasagne.nonlinearities.softmax(out_flat)
    prediction_binary = T.argmax(prediction, axis=1)

    dice_score = (T.sum(T.eq(2, prediction_binary+target_flat))*2.0 /
                    (T.sum(prediction_binary) + T.sum(target_flat)))

    loss = lasagne.objectives.categorical_crossentropy(T.clip(prediction,_EPSILON,1-_EPSILON), target_flat)
    loss = loss * weight_flat
    loss = loss.mean()
    loss += l2_loss

    accuracy = T.mean(T.eq(prediction_binary, target_flat),
                      dtype=theano.config.floatX)

    return loss, accuracy, dice_score, target_flat, prediction, prediction_binary 
開發者ID:gzuidhof,項目名稱:luna16,代碼行數:24,代碼來源:unet.py

示例6: categorical_crossentropy_nll

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import argmax [as 別名]
def categorical_crossentropy_nll(predicted_values, true_values):
    """ Returns likelihood compared to one hot category labels """
    indices = tensor.argmax(true_values, axis=-1)
    rows = tensor.arange(true_values.shape[0])
    if predicted_values.ndim < 3:
        return -tensor.log(predicted_values)[rows, indices]
    elif predicted_values.ndim == 3:
        d0 = true_values.shape[0]
        d1 = true_values.shape[1]
        pred = predicted_values.reshape((d0 * d1, -1))
        ind = indices.reshape((d0 * d1,))
        s = tensor.arange(pred.shape[0])
        correct = -tensor.log(pred)[s, ind]
        return correct.reshape((d0, d1,))
    else:
        raise AttributeError("Tensor dim not supported") 
開發者ID:kastnerkyle,項目名稱:SciPy2015,代碼行數:18,代碼來源:kdl_template.py

示例7: argmax

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import argmax [as 別名]
def argmax(x, axis=-1):
    return T.argmax(x, axis=axis, keepdims=False) 
開發者ID:lingluodlut,項目名稱:Att-ChemdNER,代碼行數:4,代碼來源:theano_backend.py

示例8: categorical_best

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import argmax [as 別名]
def categorical_best(tensor):
    """
    tensor should be a tensor of shape (..., categories)
    Return a new tensor of the same shape but one-hot at position of best category
    """
    flat_tensor = tensor.reshape([-1, tensor.shape[-1]])
    argmax_posns = T.argmax(flat_tensor, 1)
    flat_snapped = T.zeros_like(flat_tensor)
    flat_snapped = T.set_subtensor(flat_snapped[T.arange(flat_tensor.shape[0]), argmax_posns], 1.0)
    snapped = flat_snapped.reshape(tensor.shape)
    return snapped 
開發者ID:hexahedria,項目名稱:gated-graph-transformer-network,代碼行數:13,代碼來源:util.py

示例9: build_transition_cost

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import argmax [as 別名]
def build_transition_cost(logits, targets, num_transitions):
    """
    Build a parse action prediction cost function.
    """

    # swap seq_length dimension to front so that we can scan per timestep
    logits = T.swapaxes(logits, 0, 1)
    targets = targets.T

    def cost_t(logits, tgt, num_transitions):
        # TODO(jongauthier): Taper down xent cost as we proceed through
        # sequence?
        predicted_dist = T.nnet.softmax(logits)
        cost = T.nnet.categorical_crossentropy(predicted_dist, tgt)

        pred = T.argmax(logits, axis=1)
        error = T.neq(pred, tgt)
        return cost, error

    results, _ = theano.scan(cost_t, [logits, targets], non_sequences=[num_transitions])
    costs, errors = results

    # Create a mask that selects only transitions that involve real data.
    unrolling_length = T.shape(costs)[0]
    padding = unrolling_length - num_transitions
    padding = T.reshape(padding, (1, -1))
    rng = T.arange(unrolling_length) + 1
    rng = T.reshape(rng, (-1, 1))
    mask = T.gt(rng, padding)

    # Compute acc using the mask
    acc = 1.0 - (T.sum(errors * mask, dtype=theano.config.floatX)
                 / T.sum(num_transitions, dtype=theano.config.floatX))

    # Compute cost directly, since we *do* want a cost incentive to get the padding
    # transitions right.
    cost = T.mean(costs)
    return cost, acc 
開發者ID:stanfordnlp,項目名稱:spinn,代碼行數:40,代碼來源:classifier.py

示例10: standardize_weights

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import argmax [as 別名]
def standardize_weights(y, sample_weight=None, class_weight=None):
    if sample_weight is not None:
        return standardize_y(sample_weight)
    elif isinstance(class_weight, dict):
        if len(y.shape) > 2:
            raise Exception('class_weight not supported for 3+ dimensional targets.')
        if y.shape[1] > 1:
            y_classes = y.argmax(axis=1)
        elif y.shape[1] == 1:
            y_classes = np.reshape(y, y.shape[0])
        else:
            y_classes = y
        return np.expand_dims(np.array(list(map(lambda x: class_weight[x], y_classes))), 1)
    else:
        return np.ones(y.shape[:-1] + (1,)) 
開發者ID:lllcho,項目名稱:CAPTCHA-breaking,代碼行數:17,代碼來源:models.py

示例11: predict_classes

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import argmax [as 別名]
def predict_classes(self, X, batch_size=128, verbose=1):
        proba = self.predict(X, batch_size=batch_size, verbose=verbose)
        if self.class_mode == "categorical":
            return proba.argmax(axis=-1)
        else:
            return (proba > 0.5).astype('int32') 
開發者ID:lllcho,項目名稱:CAPTCHA-breaking,代碼行數:8,代碼來源:models.py

示例12: omniglot

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import argmax [as 別名]
def omniglot():
    input_var = T.tensor3('input') # input_var has dimensions (batch_size, time, input_dim)
    target_var = T.imatrix('target') # target_var has dimensions (batch_size, time) (label indices)

    # Load data
    generator = OmniglotGenerator(data_folder='./data/omniglot', batch_size=16, \
        nb_samples=5, nb_samples_per_class=10, max_rotation=0., max_shift=0, max_iter=None)

    output_var, output_var_flatten, params = memory_augmented_neural_network(input_var, \
        target_var, batch_size=generator.batch_size, nb_class=generator.nb_samples, \
        memory_shape=(128, 40), controller_size=200, input_size=20 * 20, nb_reads=4)

    cost = T.mean(T.nnet.categorical_crossentropy(output_var_flatten, target_var.flatten()))
    updates = lasagne.updates.adam(cost, params, learning_rate=1e-3)

    accuracies = accuracy_instance(T.argmax(output_var, axis=2), target_var, batch_size=generator.batch_size)

    print('Compiling the model...')
    train_fn = theano.function([input_var, target_var], cost, updates=updates)
    accuracy_fn = theano.function([input_var, target_var], accuracies)
    print('Done')

    print('Training...')
    t0 = time.time()
    all_scores, scores, accs = [], [], np.zeros(generator.nb_samples_per_class)
    try:
        for i, (example_input, example_output) in generator:
            score = train_fn(example_input, example_output)
            acc = accuracy_fn(example_input, example_output)
            all_scores.append(score)
            scores.append(score)
            accs += acc
            if i > 0 and not (i % 100):
                print('Episode %05d: %.6f' % (i, np.mean(score)))
                print(accs / 100.)
                scores, accs = [], np.zeros(generator.nb_samples_per_class)
    except KeyboardInterrupt:
        print(time.time() - t0)
        pass 
開發者ID:tristandeleu,項目名稱:ntm-one-shot,代碼行數:41,代碼來源:omniglot.py

示例13: test_none_Constant

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import argmax [as 別名]
def test_none_Constant():
    """ Tests equals

    We had an error in the past with unpickling
    """
    o1 = Constant(NoneTypeT(), None, name='NoneConst')
    o2 = Constant(NoneTypeT(), None, name='NoneConst')
    assert o1.equals(o2)
    assert NoneConst.equals(o1)
    assert o1.equals(NoneConst)
    assert NoneConst.equals(o2)
    assert o2.equals(NoneConst)

    # This trigger equals that returned the wrong answer in the past.
    import six.moves.cPickle as pickle
    import theano
    from theano import tensor

    x = tensor.vector('x')
    y = tensor.argmax(x)
    kwargs = {}
    # We can't pickle DebugMode
    if theano.config.mode in ["DebugMode", "DEBUG_MODE"]:
        kwargs = {'mode': 'FAST_RUN'}
    f = theano.function([x], [y], **kwargs)
    pickle.loads(pickle.dumps(f)) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:28,代碼來源:test_type_other.py

示例14: __init__

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import argmax [as 別名]
def __init__(self, input, n_in, n_out, name_prefix=''):
        """ Initialize the parameters of the logistic regression

        :type input: theano.tensor.TensorType
        :param input: symbolic variable that describes the input of the
                      architecture (one minibatch)

        :type n_in: int
        :param n_in: number of input units, the dimension of the space in
                     which the datapoints lie

        :type n_out: int
        :param n_out: number of output units, the dimension of the space in
                      which the labels lie

        """

        # initialize with 0 the weights W as a matrix of shape (n_in, n_out)
        self.W = theano.shared(value=numpy.zeros((n_in, n_out), dtype=theano.config.floatX),
                                name=name_prefix+'W')

        # compute vector of class-membership probabilities in symbolic form
        self.p_y_given_x = T.nnet.softmax(T.dot(input, self.W))

        # compute prediction as class whose probability is maximal in
        # symbolic form
        self.y_pred = T.argmax(self.p_y_given_x, axis=1)

        # parameters of the model
        self.params = [self.W] 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:32,代碼來源:mlp_test.py

示例15: test_argmax

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import argmax [as 別名]
def test_argmax(self):
        self.check_nondiff_rop(tensor.argmax(self.mx, axis=1)) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:4,代碼來源:test_rop.py


注:本文中的theano.tensor.argmax方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。