本文整理匯總了Python中theano.tensor.alloc方法的典型用法代碼示例。如果您正苦於以下問題:Python tensor.alloc方法的具體用法?Python tensor.alloc怎麽用?Python tensor.alloc使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類theano.tensor
的用法示例。
在下文中一共展示了tensor.alloc方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: set_output
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import alloc [as 別名]
def set_output(self):
output_shape = self._output_shape
padding = self._padding
unpool_size = self._unpool_size
unpooled_output = tensor.alloc(0.0, # Value to fill the tensor
output_shape[0],
output_shape[1] + 2 * padding[0],
output_shape[2],
output_shape[3] + 2 * padding[1],
output_shape[4] + 2 * padding[2])
unpooled_output = tensor.set_subtensor(unpooled_output[:, padding[0]:output_shape[
1] + padding[0]:unpool_size[0], :, padding[1]:output_shape[3] + padding[1]:unpool_size[
1], padding[2]:output_shape[4] + padding[2]:unpool_size[2]],
self._prev_layer.output)
self._output = unpooled_output
示例2: test_gpualloc
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import alloc [as 別名]
def test_gpualloc():
'''
This tests tries to catch the scenario when, due to infer_shape,
the input of the alloc changes from tensor scalar to a constant
1. In this case the original constracted broadcastable pattern will
have a False for that dimension, but the new broadcastable pattern
that will be inserted by gpualloc will have a True since it knows the
dimension is 1 and therefore broadcastable.
'''
x = theano.shared(numpy.ones(3, dtype='float32'), 'x')
m = (x).dimshuffle(['x', 0])
v = tensor.alloc(1., *m.shape)
f = theano.function([], v + x,
mode=mode_with_gpu.excluding("local_elemwise_alloc"))
l = f.maker.fgraph.toposort()
assert numpy.any([isinstance(x.op, cuda.GpuAlloc) for x in l])
示例3: test_gpujoin_gpualloc
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import alloc [as 別名]
def test_gpujoin_gpualloc():
a = T.fmatrix('a')
a_val = numpy.asarray(numpy.random.rand(4, 5), dtype='float32')
b = T.fmatrix('b')
b_val = numpy.asarray(numpy.random.rand(3, 5), dtype='float32')
f = theano.function([a, b], T.join(0, T.zeros_like(a), T.ones_like(b)) + 4,
mode=mode_without_gpu)
f_gpu = theano.function([a, b], T.join(0, T.zeros_like(a), T.ones_like(b)),
mode=mode_with_gpu)
f_gpu2 = theano.function([a, b], T.join(0, T.zeros_like(a),
T.ones_like(b)) + 4,
mode=mode_with_gpu)
assert sum([node.op == T.alloc for node in f.maker.fgraph.toposort()]) == 2
assert sum([node.op == T.join for node in f.maker.fgraph.toposort()]) == 1
assert sum([isinstance(node.op, B.GpuAlloc)
for node in f_gpu.maker.fgraph.toposort()]) == 2
assert sum([node.op == B.gpu_join
for node in f_gpu.maker.fgraph.toposort()]) == 1
assert sum([isinstance(node.op, B.GpuAlloc)
for node in f_gpu2.maker.fgraph.toposort()]) == 2
assert sum([node.op == B.gpu_join
for node in f_gpu2.maker.fgraph.toposort()]) == 1
assert numpy.allclose(f(a_val, b_val), f_gpu2(a_val, b_val))
示例4: test_gpualloc_output_to_gpu
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import alloc [as 別名]
def test_gpualloc_output_to_gpu():
a_val = numpy.asarray(numpy.random.rand(4, 5), dtype='float32')
a = tcn.shared_constructor(a_val)
b = T.fscalar()
f = theano.function([b], T.ones_like(a) + b, mode=mode_without_gpu)
f_gpu = theano.function([b], B.gpu_from_host(T.ones_like(a)) + b,
mode=mode_with_gpu)
f(2)
f_gpu(2)
assert sum([node.op == T.alloc for node in f.maker.fgraph.toposort()]) == 1
assert sum([node.op == B.gpu_alloc
for node in f_gpu.maker.fgraph.toposort()]) == 1
assert numpy.allclose(numpy.ones(a.get_value(borrow=True).shape) + 9,
f_gpu(9))
assert numpy.allclose(f(5), f_gpu(5))
示例5: local_gpuaalloc2
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import alloc [as 別名]
def local_gpuaalloc2(node):
"""
Join(axis, {Alloc or HostFromGPU}, ...) -> Join(axis, GpuAlloc, Alloc, ...)
Moves an alloc that is an input to join to the gpu.
"""
try:
get_context(None)
except ContextNotDefined:
# If there is no default context then we do not perform the move here.
return
if (isinstance(node.op, tensor.Alloc) and
all(c != 'output' and
c.op == tensor.join and
all(i.owner and
i.owner.op in [host_from_gpu, tensor.alloc]
for i in c.inputs[1:])
for c, idx in node.outputs[0].clients)):
return [host_from_gpu(GpuAlloc(None)(*node.inputs))]
示例6: test_gpujoin_gpualloc
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import alloc [as 別名]
def test_gpujoin_gpualloc():
a = T.fmatrix('a')
a_val = numpy.asarray(numpy.random.rand(4, 5), dtype='float32')
b = T.fmatrix('b')
b_val = numpy.asarray(numpy.random.rand(3, 5), dtype='float32')
f = theano.function([a, b], T.join(0, T.zeros_like(a), T.ones_like(b)) + 4,
mode=mode_without_gpu)
f_gpu = theano.function([a, b], T.join(0, T.zeros_like(a), T.ones_like(b)),
mode=mode_with_gpu)
f_gpu2 = theano.function([a, b], T.join(0, T.zeros_like(a),
T.ones_like(b)) + 4,
mode=mode_with_gpu)
assert sum([node.op == T.alloc for node in f.maker.fgraph.toposort()]) == 2
assert sum([node.op == T.join for node in f.maker.fgraph.toposort()]) == 1
assert sum([isinstance(node.op, GpuAlloc)
for node in f_gpu.maker.fgraph.toposort()]) == 2
assert sum([node.op == gpu_join
for node in f_gpu.maker.fgraph.toposort()]) == 1
assert sum([isinstance(node.op, GpuAlloc)
for node in f_gpu2.maker.fgraph.toposort()]) == 2
assert sum([node.op == gpu_join
for node in f_gpu2.maker.fgraph.toposort()]) == 1
assert numpy.allclose(f(a_val, b_val), f_gpu2(a_val, b_val))
示例7: compute_emb
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import alloc [as 別名]
def compute_emb(x, W):
def _step(xi, emb, W):
if prm.att_doc:
new_shape = (xi.shape[0], xi.shape[1], xi.shape[2], prm.dim_emb)
else:
new_shape = (xi.shape[0], xi.shape[1], prm.dim_emb)
out = W[xi.flatten()].reshape(new_shape).sum(-2)
return out / tensor.maximum(1., tensor.neq(xi,-1).astype('float32').sum(-1, keepdims=True))
if prm.att_doc:
emb_init = tensor.alloc(0., x.shape[1], x.shape[2], prm.dim_emb)
else:
emb_init = tensor.alloc(0., x.shape[1], prm.dim_emb)
(embs), scan_updates = theano.scan(_step,
sequences=[x],
outputs_info=[emb_init],
non_sequences=[W],
name='emb_scan',
n_steps=x.shape[0])
return embs
示例8: get_output_for
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import alloc [as 別名]
def get_output_for(self, input, **kwargs):
# by default we assume 'cross', consistent with corrmm.
conv_mode = 'conv' if self.flip_filters else 'cross'
from lasagne.layers.dnn import dnn
image = T.alloc(0., input.shape[0], *self.output_shape[1:])
conved = dnn.dnn_conv(img=image,
kerns=self.W,
subsample=self.stride,
border_mode=self.pad,
conv_mode=conv_mode
)
grad = T.grad(conved.sum(), wrt=image, known_grads={conved: input})
if self.b is None:
activation = grad
elif self.untie_biases:
activation = grad + self.b.dimshuffle('x', 0, 1, 2)
else:
activation = grad + self.b.dimshuffle('x', 0, 'x', 'x')
return self.nonlinearity(activation)
示例9: combine_fragments_to_dense_bxcyz
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import alloc [as 別名]
def combine_fragments_to_dense_bxcyz(self, tensor, sh):
""" expected shape: (batch, x, channels, y, z)"""
ttensor = tensor # be same shape as result, no significant time cost
output_stride = self.output_stride
if isinstance(output_stride, list) or isinstance(output_stride, tuple):
example_stride = np.prod(output_stride)#**3
else:
example_stride = output_stride**3
output_stride = np.asarray((output_stride,)*3)
zero = np.array((0), dtype=theano.config.floatX)
embedding = T.alloc( zero, 1, sh[1]*output_stride[0], sh[2], sh[3]*output_stride[1], sh[4]*output_stride[2]) # first arg. is fill-value (0 in this case) and not an element of the shape
ix = offset_map(output_stride)
print " output_stride",output_stride
print " example_stride",example_stride
for i,(n,m,k) in enumerate(ix):
embedding = T.set_subtensor(embedding[:,n::output_stride[0],:,m::output_stride[1],k::output_stride[2]], ttensor[i::example_stride])
return embedding
示例10: pad_to_a_multiple
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import alloc [as 別名]
def pad_to_a_multiple(tensor_, k, pad_with):
"""Pad a tensor to make its first dimension a multiple of a number.
Parameters
----------
tensor_ : :class:`~theano.Variable`
k : int
The number, multiple of which the length of tensor is made.
pad_with : float or int
The value for padding.
"""
new_length = (
tensor.ceil(tensor_.shape[0].astype('float32') / k) * k).astype('int64')
new_shape = tensor.set_subtensor(tensor_.shape[:1], new_length)
canvas = tensor.alloc(pad_with, tensor.prod(new_shape)).reshape(
new_shape, ndim=tensor_.ndim)
return tensor.set_subtensor(canvas[:tensor_.shape[0]], tensor_)
示例11: output
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import alloc [as 別名]
def output(self, *args, **kwargs):
"""
Code is based on https://github.com/lisa-lab/pylearn2/blob/master/pylearn2/expr/normalize.py
"""
input = self.input_layer.output(*args, **kwargs)
half = self.n // 2
sq = T.sqr(input)
b, ch, r, c = input.shape
extra_channels = T.alloc(0., b, ch + 2*half, r, c)
sq = T.set_subtensor(extra_channels[:,half:half+ch,:,:], sq)
scale = self.k
for i in xrange(self.n):
scale += self.alpha * sq[:,i:i+ch,:,:]
scale = scale ** self.beta
return input / scale
示例12: gru_layer
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import alloc [as 別名]
def gru_layer(tparams, emb, options):
hiddenDimSize = options['hiddenDimSize']
timesteps = emb.shape[0]
if emb.ndim == 3: n_samples = emb.shape[1]
else: n_samples = 1
def stepFn(wx, h, U_gru):
uh = T.dot(h, U_gru)
r = T.nnet.sigmoid(_slice(wx, 0, hiddenDimSize) + _slice(uh, 0, hiddenDimSize))
z = T.nnet.sigmoid(_slice(wx, 1, hiddenDimSize) + _slice(uh, 1, hiddenDimSize))
h_tilde = T.tanh(_slice(wx, 2, hiddenDimSize) + r * _slice(uh, 2, hiddenDimSize))
h_new = z * h + ((1. - z) * h_tilde)
return h_new
Wx = T.dot(emb, tparams['W_gru']) + tparams['b_gru']
results, updates = theano.scan(fn=stepFn, sequences=[Wx], outputs_info=T.alloc(numpy_floatX(0.0), n_samples, hiddenDimSize), non_sequences=[tparams['U_gru']], name='gru_layer', n_steps=timesteps)
return results
示例13: connect
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import alloc [as 別名]
def connect(self, inputs, mask, is_train):
""" is_train: A boolean tensor.
"""
max_length = inputs.shape[0]
batch_size = inputs.shape[1]
outputs_info = [tensor.alloc(numpy_floatX(0.), batch_size, self.hidden_dim),
tensor.alloc(numpy_floatX(0.), batch_size, self.hidden_dim)]
# Dropout mask sharing for variational dropout.
self.is_train = is_train
if self.recurrent_dropout_layer != None:
self.recurrent_dropout_layer.generate_mask([batch_size, self.hidden_dim], is_train)
inputs = tensor.dot(inputs, self.W) + self.b
rval, _ = theano.scan(self._step, # Scan function
sequences=[inputs, mask], # Input sequence
outputs_info=outputs_info,
name=_p(self.prefix, '_layers'),
n_steps=max_length) # scan steps
return rval[0]
示例14: gru_layer
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import alloc [as 別名]
def gru_layer(tparams, emb, name, hiddenDimSize):
timesteps = emb.shape[0]
if emb.ndim == 3: n_samples = emb.shape[1]
else: n_samples = 1
def stepFn(wx, h, U_gru):
uh = T.dot(h, U_gru)
r = T.nnet.sigmoid(_slice(wx, 0, hiddenDimSize) + _slice(uh, 0, hiddenDimSize))
z = T.nnet.sigmoid(_slice(wx, 1, hiddenDimSize) + _slice(uh, 1, hiddenDimSize))
h_tilde = T.tanh(_slice(wx, 2, hiddenDimSize) + r * _slice(uh, 2, hiddenDimSize))
h_new = z * h + ((1. - z) * h_tilde)
return h_new
Wx = T.dot(emb, tparams['W_gru_'+name]) + tparams['b_gru_'+name]
results, updates = theano.scan(fn=stepFn, sequences=[Wx], outputs_info=T.alloc(numpy_floatX(0.0), n_samples, hiddenDimSize), non_sequences=[tparams['U_gru_'+name]], name='gru_layer', n_steps=timesteps)
return results
示例15: theano_repeat
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import alloc [as 別名]
def theano_repeat(arr, n_repeat, stretch=False):
"""
Create repeats of 2D array using broadcasting.
Shape[0] incorrect after this node!
"""
if arr.dtype not in ["float32", "float64"]:
arr = tensor.cast(arr, "int32")
if stretch:
arg1 = arr.dimshuffle((0, 'x', 1))
arg2 = tensor.alloc(1., 1, n_repeat, arr.shape[1])
arg2 = tensor.cast(arg2, arr.dtype)
cloned = (arg1 * arg2).reshape((n_repeat * arr.shape[0], arr.shape[1]))
else:
arg1 = arr.dimshuffle(('x', 0, 1))
arg2 = tensor.alloc(1., n_repeat, 1, arr.shape[1])
arg2 = tensor.cast(arg2, arr.dtype)
cloned = (arg1 * arg2).reshape((n_repeat * arr.shape[0], arr.shape[1]))
shape = expression_shape(arr)
name = expression_name(arr)
# Stretched shapes are *WRONG*
tag_expression(cloned, name + "_stretched", (shape[0], shape[1]))
return cloned