當前位置: 首頁>>代碼示例>>Python>>正文


Python tensor.add方法代碼示例

本文整理匯總了Python中theano.tensor.add方法的典型用法代碼示例。如果您正苦於以下問題:Python tensor.add方法的具體用法?Python tensor.add怎麽用?Python tensor.add使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在theano.tensor的用法示例。


在下文中一共展示了tensor.add方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: build_bilinear_net

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import add [as 別名]
def build_bilinear_net(input_shapes, X_var=None, U_var=None, X_diff_var=None, axis=1):
    x_shape, u_shape = input_shapes
    X_var = X_var or T.tensor4('X')
    U_var = U_var or T.matrix('U')
    X_diff_var = X_diff_var or T.tensor4('X_diff')
    X_next_var = X_var + X_diff_var

    l_x = L.InputLayer(shape=(None,) + x_shape, input_var=X_var)
    l_u = L.InputLayer(shape=(None,) + u_shape, input_var=U_var)

    l_x_diff_pred = LT.BilinearLayer([l_x, l_u], axis=axis)
    l_x_next_pred = L.ElemwiseMergeLayer([l_x, l_x_diff_pred], T.add)
    l_y = L.flatten(l_x)
    l_y_diff_pred = L.flatten(l_x_diff_pred)

    X_next_pred_var = lasagne.layers.get_output(l_x_next_pred)
    loss = ((X_next_var - X_next_pred_var) ** 2).mean(axis=0).sum() / 2.

    net_name = 'BilinearNet'
    input_vars = OrderedDict([(var.name, var) for var in [X_var, U_var, X_diff_var]])
    pred_layers = OrderedDict([('y_diff_pred', l_y_diff_pred), ('y', l_y), ('x0_next_pred', l_x_next_pred)])
    return net_name, input_vars, pred_layers, loss 
開發者ID:alexlee-gk,項目名稱:visual_dynamics,代碼行數:24,代碼來源:net_theano.py

示例2: create_structure

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import add [as 別名]
def create_structure(self):
        """Creates the symbolic graph of this layer.

        Sets self.output to a symbolic matrix that describes the output of this
        layer. If the inputs are the same size as the output, the output will be
        the elementwise sum of the inputs. If needed, the inputs will be
        projected to the same size.
        """

        for input_index, input_layer in enumerate(self._input_layers):
            input_size = input_layer.output_size
            if input_size == self.output_size:
                input_matrix = input_layer.output
            else:
                input_matrix = self._tensor_preact(input_layer.output,
                                                   'input{}'.format(input_index),
                                                   use_bias=False)

            if self.output is None:
                self.output = input_matrix
            else:
                self.output = tensor.add(self.output, input_matrix) 
開發者ID:senarvi,項目名稱:theanolm,代碼行數:24,代碼來源:additionlayer.py

示例3: rbf_kernel

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import add [as 別名]
def rbf_kernel(X):

    XY = T.dot(X, X.T)
    x2 = T.sum(X**2, axis=1).dimshuffle(0, 'x')
    X2e = T.repeat(x2, X.shape[0], axis=1)
    H = X2e +  X2e.T - 2. * XY

    V = H.flatten()
    # median distance
    h = T.switch(T.eq((V.shape[0] % 2), 0),
        # if even vector
        T.mean(T.sort(V)[ ((V.shape[0] // 2) - 1) : ((V.shape[0] // 2) + 1) ]),
        # if odd vector
        T.sort(V)[V.shape[0] // 2])

    h = T.sqrt(.5 * h / T.log(H.shape[0].astype('float32') + 1.)) 
    
    # compute the rbf kernel
    kxy = T.exp(-H / (h ** 2) / 2.0)

    dxkxy = -T.dot(kxy, X)
    sumkxy = T.sum(kxy, axis=1).dimshuffle(0, 'x')
    dxkxy = T.add(dxkxy, T.mul(X, sumkxy)) / (h ** 2)

    return kxy, dxkxy 
開發者ID:DartML,項目名稱:SteinGAN,代碼行數:27,代碼來源:rbm_adv.py

示例4: input_to_h_from_v

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import add [as 別名]
def input_to_h_from_v(self, v):
        """
        .. todo::

            WRITEME
        """
        D = self.Lambda
        alpha = self.alpha

        def sum_s(x):
            return x.reshape((
                -1,
                self.nhid,
                self.n_s_per_h)).sum(axis=2)

        return tensor.add(
                self.b,
                -0.5 * tensor.dot(v * v, D),
                sum_s(self.mu * tensor.dot(v, self.W)),
                sum_s(0.5 * tensor.sqr(tensor.dot(v, self.W)) / alpha))

    #def mean_h_given_v(self, v):
    #    inherited version is OK:
    #    return nnet.sigmoid(self.input_to_h_from_v(v)) 
開發者ID:zchengquan,項目名稱:TextDetector,代碼行數:26,代碼來源:rbm.py

示例5: free_energy_given_v

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import add [as 別名]
def free_energy_given_v(self, v):
        """
        .. todo::

            WRITEME
        """
        sigmoid_arg = self.input_to_h_from_v(v)
        return tensor.add(
                0.5 * (self.B * (v ** 2)).sum(axis=1),
                -tensor.nnet.softplus(sigmoid_arg).sum(axis=1))

    #def __call__(self, v):
    #    inherited version is OK

    #def reconstruction_error:
    #    inherited version should be OK

    #def params(self):
    #    inherited version is OK. 
開發者ID:zchengquan,項目名稱:TextDetector,代碼行數:21,代碼來源:rbm.py

示例6: sequence_iteration

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import add [as 別名]
def sequence_iteration(self, output, mask,use_dropout=0,dropout_value=0.5):

        dot_product = T.dot(output , self.t_w_out)

        net_o = T.add( dot_product , self.t_b_out )

        ex_net = T.exp(net_o)
        sum_net = T.sum(ex_net, axis=2, keepdims=True)
        softmax_o = ex_net / sum_net


        mask = T.addbroadcast(mask, 2) # to do nesseccary?
        output = T.mul(mask, softmax_o)   + T.mul( (1. - mask) , 1e-6 )

        return output #result


######                     Linear Layer
######################################## 
開發者ID:JoergFranke,項目名稱:recnet,代碼行數:21,代碼來源:output_layer.py

示例7: sequence_iteration

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import add [as 別名]
def sequence_iteration(self, in_seq, mask, use_dropout,dropout_value=1):

        in_seq_d = T.switch(use_dropout,
                             (in_seq *
                              self.trng.binomial(in_seq.shape,
                                            p=dropout_value, n=1,
                                            dtype=in_seq.dtype)),
                             in_seq)

        rz_in_seq =  T.add( T.dot(in_seq_d, self.weights[0]) , self.weights[1] )

        out_seq, updates = theano.scan(
                                        fn=self.t_forward_step,
                                        sequences=[mask, rz_in_seq],  # in_seq_d],
                                        outputs_info=[self.t_ol_t00],
                                        non_sequences=[i for i in self.weights][2:] + [self.t_n_out],
                                        go_backwards = self.go_backwards,
                                        truncate_gradient=-1,
                                        #n_steps=50,
                                        strict=True,
                                        allow_gc=False,
                                        )
        return out_seq 
開發者ID:JoergFranke,項目名稱:recnet,代碼行數:25,代碼來源:recurrent_layer.py

示例8: fit

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import add [as 別名]
def fit(self, weights, o_error, tpo ):

        gradients = T.grad(o_error ,weights)
        updates = []
        for c, v, w, g in zip(self.t_cache, self.t_velocity, weights,gradients):
            new_velocity = T.sub( T.mul(tpo["momentum_rate"], v) , T.mul(tpo["learn_rate"], g) )
            new_cache = T.add( T.mul(tpo["decay_rate"] , c) , T.mul(T.sub( 1, tpo["decay_rate"]) , T.sqr(g)))
            new_weights = T.sub(T.add(w , new_velocity) , T.true_div( T.mul(g,tpo["learn_rate"]) , T.sqrt(T.add(new_cache,0.1**8))))
            updates.append((w, new_weights))
            updates.append((v, new_velocity))
            updates.append((c, new_cache))

        return updates


######                 Nesterov momentum
######################################## 
開發者ID:JoergFranke,項目名稱:recnet,代碼行數:19,代碼來源:update_function.py

示例9: __init__

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import add [as 別名]
def __init__(self, net, mixfrac=1.0, maxiter=25):
        EzPickle.__init__(self, net, mixfrac, maxiter)
        self.net = net
        self.mixfrac = mixfrac

        x_nx = net.input
        self.predict = theano.function([x_nx], net.output, **FNOPTS)

        ypred_ny = net.output
        ytarg_ny = T.matrix("ytarg")
        var_list = net.trainable_weights
        l2 = 1e-3 * T.add(*[T.square(v).sum() for v in var_list])
        N = x_nx.shape[0]
        mse = T.sum(T.square(ytarg_ny - ypred_ny))/N
        symb_args = [x_nx, ytarg_ny]
        loss = mse + l2
        self.opt = LbfgsOptimizer(loss, var_list, symb_args, maxiter=maxiter, extra_losses={"mse":mse, "l2":l2}) 
開發者ID:joschu,項目名稱:modular_rl,代碼行數:19,代碼來源:core.py

示例10: __add__

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import add [as 別名]
def __add__(left, right):
        return add(left, right) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:4,代碼來源:basic.py

示例11: __radd__

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import add [as 別名]
def __radd__(right, left):
        return add(left, right) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:4,代碼來源:basic.py

示例12: test_softmax_optimizations_w_bias2

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import add [as 別名]
def test_softmax_optimizations_w_bias2(self):
        x = tensor.matrix('x')
        b = tensor.vector('b')
        c = tensor.vector('c')
        one_of_n = tensor.lvector('one_of_n')
        op = crossentropy_categorical_1hot

        fgraph = gof.FunctionGraph(
                [x, b, c, one_of_n],
                [op(softmax_op(T.add(x, b, c)), one_of_n)])
        assert fgraph.outputs[0].owner.op == op

        # print 'BEFORE'
        # for node in fgraph.toposort():
        #    print node.op
        # print '----'

        theano.compile.mode.optdb.query(
                theano.compile.mode.OPT_FAST_RUN).optimize(fgraph)

        # print 'AFTER'
        # for node in fgraph.toposort():
        #    print node.op
        # print '===='
        assert len(fgraph.toposort()) == 3

        assert str(fgraph.outputs[0].owner.op) == 'OutputGuard'
        assert (fgraph.outputs[0].owner.inputs[0].owner.op ==
                crossentropy_softmax_argmax_1hot_with_bias) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:31,代碼來源:test_nnet.py

示例13: set_layer_param_tags

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import add [as 別名]
def set_layer_param_tags(layer, params=None, **tags):
    """
    If params is None, update tags of all parameters, else only update tags of parameters in params.
    """
    for param, param_tags in layer.params.items():
        if params is None or param in params:
            for tag, value in tags.items():
                if value:
                    param_tags.add(tag)
                else:
                    param_tags.discard(tag) 
開發者ID:alexlee-gk,項目名稱:visual_dynamics,代碼行數:13,代碼來源:layers_theano.py

示例14: __init__

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import add [as 別名]
def __init__(self, incomings, **kwargs):
        super(BatchwiseSumLayer, self).__init__(incomings, T.add, **kwargs) 
開發者ID:alexlee-gk,項目名稱:visual_dynamics,代碼行數:4,代碼來源:layers_theano.py

示例15: __init__

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import add [as 別名]
def __init__(self, x, y, args):
        self.params_theta = []
        self.params_lambda = []
        self.params_weight = []
        if args.dataset == 'mnist':
            input_size = (None, 1, 28, 28)
        elif args.dataset == 'cifar10':
            input_size = (None, 3, 32, 32)
        else:
            raise AssertionError
        layers = [ll.InputLayer(input_size)]
        self.penalty = theano.shared(np.array(0.))

        #conv1
        layers.append(Conv2DLayerWithReg(args, layers[-1], 20, 5))
        self.add_params_to_self(args, layers[-1])
        layers.append(ll.MaxPool2DLayer(layers[-1], pool_size=2, stride=2))
        #conv1
        layers.append(Conv2DLayerWithReg(args, layers[-1], 50, 5))
        self.add_params_to_self(args, layers[-1])
        layers.append(ll.MaxPool2DLayer(layers[-1], pool_size=2, stride=2))
        #fc1
        layers.append(DenseLayerWithReg(args, layers[-1], num_units=500))
        self.add_params_to_self(args, layers[-1])
        #softmax
        layers.append(DenseLayerWithReg(args, layers[-1], num_units=10, nonlinearity=nonlinearities.softmax))
        self.add_params_to_self(args, layers[-1])

        self.layers = layers
        self.y = ll.get_output(layers[-1], x, deterministic=False)
        self.prediction = T.argmax(self.y, axis=1)
        # self.penalty = penalty if penalty != 0. else T.constant(0.)
        print(self.params_lambda)
        # time.sleep(20)
        # cost function
        self.loss = T.mean(categorical_crossentropy(self.y, y))
        self.lossWithPenalty = T.add(self.loss, self.penalty)
        print "loss and losswithpenalty", type(self.loss), type(self.lossWithPenalty) 
開發者ID:bigaidream-projects,項目名稱:drmad,代碼行數:40,代碼來源:models.py


注:本文中的theano.tensor.add方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。