本文整理匯總了Python中theano.tensor.Elemwise方法的典型用法代碼示例。如果您正苦於以下問題:Python tensor.Elemwise方法的具體用法?Python tensor.Elemwise怎麽用?Python tensor.Elemwise使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類theano.tensor
的用法示例。
在下文中一共展示了tensor.Elemwise方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_infer_shape
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import Elemwise [as 別名]
def test_infer_shape(self):
for s_left, s_right in [((5, 6), (5, 6)),
((5, 6), (5, 1)),
((5, 6), (1, 6)),
((5, 1), (5, 6)),
((1, 6), (5, 6)),
((2, 3, 4, 5), (2, 3, 4, 5)),
((2, 3, 4, 5), (2, 3, 1, 5)),
((2, 3, 4, 5), (1, 3, 4, 5)),
((2, 1, 4, 5), (2, 3, 4, 5)),
((2, 3, 4, 1), (2, 3, 4, 5))]:
dtype = theano.config.floatX
t_left = TensorType(dtype, [(entry == 1) for entry in s_left])()
t_right = TensorType(dtype, [(entry == 1) for entry in s_right])()
t_left_val = numpy.zeros(s_left, dtype=dtype)
t_right_val = numpy.zeros(s_right, dtype=dtype)
self._compile_and_check([t_left, t_right],
[Elemwise(scalar.add)(t_left, t_right)],
[t_left_val, t_right_val], Elemwise)
示例2: test_gt_grad
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import Elemwise [as 別名]
def test_gt_grad():
"""A user test that failed.
Something about it made Elemwise.grad return something that was
too complicated for get_scalar_constant_value to recognize as being 0, so
gradient.grad reported that it was not a valid gradient of an
integer.
"""
floatX = config.floatX
T = theano.tensor
input_ = T.vector(dtype=floatX)
random_values = numpy.random.RandomState(1234).uniform(
low=-1, high=1, size=(2, 2))
W_values = numpy.asarray(random_values, dtype=floatX)
W = theano.shared(value=W_values, name='weights')
correct_score = T.dot(input_, W)
wrong_input = T.vector(dtype=floatX)
wrong_score = theano.clone(correct_score, {input_: wrong_input})
# Hinge loss
scores = T.ones_like(correct_score) - correct_score + wrong_score
cost = (scores * (scores > 0)).sum()
T.grad(cost, input_)
示例3: test_incsubtensor_mixed
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import Elemwise [as 別名]
def test_incsubtensor_mixed():
# This catches a bug that occurred when incrementing
# a float32 tensor by a float64 tensor.
# The result is defined to be float32, so it is OK
# to downcast the float64 increment in order to
# transfer it to the GPU.
# The bug was that the optimization called GpuFromHost
# without casting first, causing the optimization to
# fail.
X = tensor.fmatrix()
Y = tensor.dmatrix()
Z = tensor.inc_subtensor(X[0:1, 0:1], Y)
f = theano.function([X, Y], Z, mode=mode_with_gpu)
packed, = f.maker.fgraph.inputs[1].clients
client, idx = packed
print(client)
assert isinstance(client.op, tensor.Elemwise)
assert isinstance(client.op.scalar_op, theano.scalar.Cast)
packed, = client.outputs[0].clients
client, idx = packed
assert isinstance(client.op, cuda.GpuFromHost)
示例4: test_elemwise3
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import Elemwise [as 別名]
def test_elemwise3():
""" Several kinds of elemwise expressions with dimension
permutations and broadcasting"""
shape = (3, 4, 5, 6)
a = tcn.shared_constructor(theano._asarray(numpy.random.rand(*shape),
dtype='float32'), 'a')
b = tensor.fvector()
new_val = (a + b).dimshuffle([2, 0, 3, 1])
new_val *= tensor.exp(1 + b ** a).dimshuffle([2, 0, 3, 1])
f = pfunc([b], [], updates=[(a, new_val)], mode=mode_with_gpu)
has_elemwise = False
for i, node in enumerate(f.maker.fgraph.toposort()):
has_elemwise = has_elemwise or isinstance(node.op, tensor.Elemwise)
assert not has_elemwise
# let debugmode catch errors
f(theano._asarray(numpy.random.rand(6), dtype='float32'))
示例5: test_elemwise4
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import Elemwise [as 別名]
def test_elemwise4():
""" Test that two vectors can be broadcast to form an outer
product (by performing rank-1 matrix update"""
shape = (3, 4)
a = tcn.shared_constructor(theano._asarray(numpy.random.rand(*shape),
dtype='float32'), 'a')
b = tensor.fvector()
c = tensor.fvector()
f = pfunc([b, c], [],
updates=[(a, (a + b.dimshuffle('x', 0) * c.dimshuffle(0, 'x')))],
mode=mode_with_gpu)
has_elemwise = False
for i, node in enumerate(f.maker.fgraph.toposort()):
has_elemwise = has_elemwise or isinstance(node.op, tensor.Elemwise)
assert not has_elemwise
# let debugmode catch errors
f(theano._asarray(numpy.random.rand(4), dtype='float32'),
theano._asarray(numpy.random.rand(3), dtype='float32'))
示例6: main
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import Elemwise [as 別名]
def main():
vlen = 10 * 30 * 768 # 10 x #cores x # threads per core
iters = 1000
rng = numpy.random.RandomState(22)
x = shared(numpy.asarray(rng.rand(vlen), config.floatX))
f = function([], T.exp(x))
print(f.maker.fgraph.toposort())
t0 = time.time()
for i in iter(range(iters)):
r = f()
t1 = time.time()
print('Looping %d times took' % iters, t1 - t0, 'seconds')
print('Result is', r)
if numpy.any([isinstance(x.op, T.Elemwise) for x in f.maker.fgraph.toposort()]):
print('Used the cpu')
else:
print('Used the gpu')
示例7: get_processor_type
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import Elemwise [as 別名]
def get_processor_type():
"""
Test whether the GPU is being used, based on the example in
http://deeplearning.net/software/theano/tutorial/using_gpu.html
"""
rng = np.random.RandomState(22)
n = 10*30*768
x = shared(rng.rand(n))
f = function([], T.exp(x))
if np.any([isinstance(x.op, T.Elemwise) for x in f.maker.fgraph.toposort()]):
return 'cpu'
return 'gpu'
示例8: test_if_using_GPU
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import Elemwise [as 別名]
def test_if_using_GPU(verbose=False):
dtype = config.floatX # @UndefinedVariable
vlen = 10 * 30 * 768 # 10 x #cores x # threads per core
iters = 100
rng = numpy.random.RandomState(22)
x = shared(numpy.asarray(rng.rand(vlen), dtype))
f = function([], tensor.exp(x))
# print(f.maker.fgraph.toposort())
t0 = time.time()
for _ in range(iters):
r = f()
t1 = time.time()
dur = t1 - t0
if verbose:
print("Looping %d times took %f seconds" % (iters, dur))
print("Result is %s" % (r,))
if numpy.any([isinstance(x.op, tensor.Elemwise) and
('Gpu' not in type(x.op).__name__)
for x in f.maker.fgraph.toposort()]):
print('Using the cpu')
return False
else:
print('Using the gpu')
return True
示例9: local_gpua_row_switch
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import Elemwise [as 別名]
def local_gpua_row_switch(node):
"""
Detects eligible Switch instances and replaces them with a GPU
row switch.
"""
if (node.op.__class__ == T.Elemwise
and node.op.scalar_op.__class__ != theano.scalar.Switch):
return False
cond, ift, iff = node.inputs
out, = node.outputs
# Only applies to Switch instances where a vector mask broadcasts over
# matrices.
bcast = cond.broadcastable
if not bcast or not (not bcast[0] and all(bcast[1:])
and ift.ndim in [2, 3]):
return False
if not (ift.dtype == iff.dtype == "float32"):
return False
if cond.owner and isinstance(cond.owner.op, HostFromGpu):
gpu_cond, = cond.owner.inputs
else:
gpu_cond = as_cuda_ndarray_variable(
T.cast(cond.flatten(), "float32"))
if ift.owner and isinstance(ift.owner.op, HostFromGpu):
gpu_ift, = ift.owner.inputs
else:
gpu_ift = as_cuda_ndarray_variable(ift)
if iff.owner and isinstance(iff.owner.op, HostFromGpu):
gpu_iff, = iff.owner.inputs
else:
gpu_iff = as_cuda_ndarray_variable(iff)
gpu_op = GpuRowSwitch()
return [HostFromGpu()(gpu_op(cond, gpu_ift, gpu_iff))]
示例10: with_linker
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import Elemwise [as 別名]
def with_linker(self, linker, op, type, rand_val):
for xsh, ysh in [((3, 5), (3, 5)),
((3, 5), (1, 5)),
((3, 5), (3, 1)),
((1, 5), (5, 1)),
((1, 1), (1, 1)),
((self.openmp_minsize,), (self.openmp_minsize,)),
((self.openmp_minsize_sqrt,
self.openmp_minsize_sqrt),
(self.openmp_minsize_sqrt,
self.openmp_minsize_sqrt)),
((2, 3, 4, 5), (2, 3, 4, 5)),
((2, 3, 4, 5), (1, 3, 1, 5)),
((2, 3, 4, 5), (1, 1, 1, 1)),
((), ())]:
x = type('float64', [(entry == 1) for entry in xsh])('x')
y = type('float64', [(entry == 1) for entry in ysh])('y')
e = op(scalar.add)(x, y)
f = copy(linker).accept(FunctionGraph([x, y], [e])).make_function()
xv = rand_val(xsh)
yv = rand_val(ysh)
zv = xv + yv
unittest_tools.assert_allclose(f(xv, yv), zv)
# test Elemwise.infer_shape
# the Shape op don't implement c_code!
if isinstance(linker, gof.PerformLinker):
x = type('float64', [(entry == 1) for entry in xsh])('x')
y = type('float64', [(entry == 1) for entry in ysh])('y')
e = op(scalar.add)(x, y)
f = copy(linker).accept(FunctionGraph(
[x, y], [e.shape])).make_function()
assert tuple(f(xv, yv)) == tuple(zv.shape)
示例11: with_linker_inplace
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import Elemwise [as 別名]
def with_linker_inplace(self, linker, op, type, rand_val):
for xsh, ysh in [((5, 5), (5, 5)),
((5, 5), (1, 5)),
((5, 5), (5, 1)),
((1, 1), (1, 1)),
((2, 3, 4, 5), (2, 3, 4, 5)),
((2, 3, 4, 5), (1, 3, 1, 5)),
((2, 3, 4, 5), (1, 1, 1, 1)),
((), ())]:
x = type('float64', [(entry == 1) for entry in xsh])('x')
y = type('float64', [(entry == 1) for entry in ysh])('y')
e = op(scalar.Add(scalar.transfer_type(0)), {0: 0})(x, y)
f = copy(linker).accept(FunctionGraph([x, y], [e])).make_function()
xv = rand_val(xsh)
yv = rand_val(ysh)
zv = xv + yv
f(xv, yv)
self.assertTrue((xv == zv).all())
# test Elemwise.infer_shape
# the Shape op don't implement c_code!
if isinstance(linker, gof.PerformLinker):
x = type('float64', [(entry == 1) for entry in xsh])('x')
y = type('float64', [(entry == 1) for entry in ysh])('y')
e = op(scalar.Add(scalar.transfer_type(0)), {0: 0})(x, y)
f = copy(linker).accept(FunctionGraph(
[x, y], [e.shape])).make_function()
xv = rand_val(xsh)
yv = rand_val(ysh)
zv = xv + yv
f(xv, yv)
assert xv.shape == zv.shape
示例12: test_not_implemented_elemwise_grad
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import Elemwise [as 別名]
def test_not_implemented_elemwise_grad():
"""
Regression test for unimplemented gradient in an Elemwise Op.
"""
class TestOp(scalar.ScalarOp):
def __init__(self):
self.output_types_preference = scalar.upgrade_to_float
def impl(self, n, x):
return x * n
def grad(self, inputs, gout):
(n, x) = inputs
(gz,) = gout
dy_dx = n
return [theano.gradient.grad_not_implemented(self, 0, n),
gz * dy_dx]
test_op = tensor.Elemwise(TestOp())
x = tensor.scalar()
# The call to `grad` used to crash.
tensor.grad(test_op(2, x), x)
# Verify that trying to use the not implemented gradient fails.
try:
tensor.grad(test_op(x, 2), x)
assert False
except theano.gradient.NullTypeGradError:
pass
示例13: dtype_in_elemwise_supported
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import Elemwise [as 別名]
def dtype_in_elemwise_supported(op):
"""
Return True of the Elemwise op is supported on the gpu.
Return False otherwise.
Notes
-----
We need to check inside the Composite op.
"""
def get_all_basic_scalar(composite_op):
l = []
for i in composite_op.fgraph.toposort():
if isinstance(i, theano.scalar.Composite):
l += get_all_basic_scalar(i)
else:
l.append(i)
return l
if isinstance(op, GpuElemwise) or isinstance(op, tensor.Elemwise):
if isinstance(op.scalar_op, theano.scalar.Composite):
scals = get_all_basic_scalar(op.scalar_op)
for s in scals:
if any([i.type.dtype not in elemwise_cuda_dtype_supported
for i in s.inputs + s.outputs]):
return False
return True
示例14: local_gpu_elemwise_1
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import Elemwise [as 別名]
def local_gpu_elemwise_1(node):
"""
gpu_from_host(Elemwise)) -> GpuElemwise(gpu_from_host(...))
"""
if isinstance(node.op, GpuFromHost):
host_i, = node.inputs
if (host_i.owner and
isinstance(host_i.owner.op, tensor.Elemwise) and
len(host_i.clients) == 1 and
dtype_in_elemwise_supported(node.op)):
elemwise_node = host_i.owner
# Don't set any inplace pattern.
# gpu_inplace_elemwise_optimizer will do it later
if isinstance(elemwise_node.op.scalar_op, Erfinv):
new_op = GpuElemwise(erfinv_gpu)
elif isinstance(elemwise_node.op.scalar_op, Erfcx):
new_op = GpuElemwise(erfcx_gpu)
else:
try:
new_op = GpuElemwise(elemwise_node.op.scalar_op)
except SupportCodeError:
# This happens when scalar_op requires support code
return False
if all([i.dtype == 'float32' for i in elemwise_node.inputs]):
gpu_elemwise = new_op(*[as_cuda_ndarray_variable(i)
for i in elemwise_node.inputs])
gpu_elemwise = split_huge_add_or_mul(gpu_elemwise.owner)
if not gpu_elemwise:
return False
return [gpu_elemwise.outputs[0]]
return False
示例15: test_erfinvgpu
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import Elemwise [as 別名]
def test_erfinvgpu():
""" Test that local_gpu_elemwise_0 replaces Erfinv with ErfinvGPU """
x = tensor.fmatrix()
f = theano.function([x], tensor.Elemwise(erfinv)(x), mode=mode_with_gpu)
f2 = theano.function([x], tensor.Elemwise(erfinv)(x),
mode=mode_without_gpu)
assert isinstance(f.maker.fgraph.toposort()[1].op, cuda.GpuElemwise)
assert isinstance(f.maker.fgraph.toposort()[1].op.scalar_op,
cuda.elemwise.ErfinvGPU)
xv = numpy.random.rand(7, 8).astype('float32')
if imported_scipy_special:
assert numpy.allclose(f(xv), f2(xv))