當前位置: 首頁>>代碼示例>>Python>>正文


Python theano.shared方法代碼示例

本文整理匯總了Python中theano.shared方法的典型用法代碼示例。如果您正苦於以下問題:Python theano.shared方法的具體用法?Python theano.shared怎麽用?Python theano.shared使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在theano的用法示例。


在下文中一共展示了theano.shared方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: sgd

# 需要導入模塊: import theano [as 別名]
# 或者: from theano import shared [as 別名]
def sgd(self, cost, params,constraints={}, lr=0.01):
#{{{
        """
        Stochatic gradient descent.
        """
        updates = []
        
        lr = theano.shared(np.float32(lr).astype(floatX))
        gradients = self.get_gradients(cost, params)
        
        for p, g in zip(params, gradients):
            v=-lr*g;
            new_p=p+v;
            # apply constraints
            if p in constraints:
                c=constraints[p];
                new_p=c(new_p);
            updates.append((p, new_p))

        return updates
#}}} 
開發者ID:lingluodlut,項目名稱:Att-ChemdNER,代碼行數:23,代碼來源:optimization.py

示例2: sgdmomentum

# 需要導入模塊: import theano [as 別名]
# 或者: from theano import shared [as 別名]
def sgdmomentum(self, cost, params,constraints={}, lr=0.01,consider_constant=None, momentum=0.):
        """
        Stochatic gradient descent with momentum. Momentum has to be in [0, 1)
        """
        # Check that the momentum is a correct value
        assert 0 <= momentum < 1

        lr = theano.shared(np.float32(lr).astype(floatX))
        momentum = theano.shared(np.float32(momentum).astype(floatX))

        gradients = self.get_gradients(cost, params)
        velocities = [theano.shared(np.zeros_like(param.get_value(borrow=True)).astype(floatX)) for param in params]

        updates = []
        for param, gradient, velocity in zip(params, gradients, velocities):
            new_velocity = momentum * velocity - lr * gradient
            updates.append((velocity, new_velocity))
            new_p=param+new_velocity;
            # apply constraints
            if param in constraints:
                c=constraints[param];
                new_p=c(new_p);
            updates.append((param, new_p))
        return updates 
開發者ID:lingluodlut,項目名稱:Att-ChemdNER,代碼行數:26,代碼來源:optimization.py

示例3: adagrad

# 需要導入模塊: import theano [as 別名]
# 或者: from theano import shared [as 別名]
def adagrad(self, cost, params, lr=1.0, epsilon=1e-6,consider_constant=None):
        """
        Adagrad. Based on http://www.ark.cs.cmu.edu/cdyer/adagrad.pdf
        """
        lr = theano.shared(np.float32(lr).astype(floatX))
        epsilon = theano.shared(np.float32(epsilon).astype(floatX))

        gradients = self.get_gradients(cost, params,consider_constant)
        gsums = [theano.shared(np.zeros_like(param.get_value(borrow=True)).astype(floatX)) for param in params]

        updates = []
        for param, gradient, gsum in zip(params, gradients, gsums):
            new_gsum = gsum + gradient ** 2.
            updates.append((gsum, new_gsum))
            updates.append((param, param - lr * gradient / (T.sqrt(gsum + epsilon))))
        return updates 
開發者ID:lingluodlut,項目名稱:Att-ChemdNER,代碼行數:18,代碼來源:optimization.py

示例4: adadelta

# 需要導入模塊: import theano [as 別名]
# 或者: from theano import shared [as 別名]
def adadelta(self, cost, params, rho=0.95, epsilon=1e-6,consider_constant=None):
        """
        Adadelta. Based on:
        http://www.matthewzeiler.com/pubs/googleTR2012/googleTR2012.pdf
        """
        rho = theano.shared(np.float32(rho).astype(floatX))
        epsilon = theano.shared(np.float32(epsilon).astype(floatX))

        gradients = self.get_gradients(cost, params,consider_constant)
        accu_gradients = [theano.shared(np.zeros_like(param.get_value(borrow=True)).astype(floatX)) for param in params]
        accu_deltas = [theano.shared(np.zeros_like(param.get_value(borrow=True)).astype(floatX)) for param in params]

        updates = []
        for param, gradient, accu_gradient, accu_delta in zip(params, gradients, accu_gradients, accu_deltas):
            new_accu_gradient = rho * accu_gradient + (1. - rho) * gradient ** 2.
            delta_x = - T.sqrt((accu_delta + epsilon) / (new_accu_gradient + epsilon)) * gradient
            new_accu_delta = rho * accu_delta + (1. - rho) * delta_x ** 2.
            updates.append((accu_gradient, new_accu_gradient))
            updates.append((accu_delta, new_accu_delta))
            updates.append((param, param + delta_x))
        return updates 
開發者ID:lingluodlut,項目名稱:Att-ChemdNER,代碼行數:23,代碼來源:optimization.py

示例5: rmsprop

# 需要導入模塊: import theano [as 別名]
# 或者: from theano import shared [as 別名]
def rmsprop(self, cost, params, lr=0.001, rho=0.9, eps=1e-6,consider_constant=None):
        """
        RMSProp.
        """
        lr = theano.shared(np.float32(lr).astype(floatX))

        gradients = self.get_gradients(cost, params,consider_constant)
        accumulators = [theano.shared(np.zeros_like(p.get_value()).astype(np.float32)) for p in params]

        updates = []

        for param, gradient, accumulator in zip(params, gradients, accumulators):
            new_accumulator = rho * accumulator + (1 - rho) * gradient ** 2
            updates.append((accumulator, new_accumulator))

            new_param = param - lr * gradient / T.sqrt(new_accumulator + eps)
            updates.append((param, new_param))

        return updates 
開發者ID:lingluodlut,項目名稱:Att-ChemdNER,代碼行數:21,代碼來源:optimization.py

示例6: variable

# 需要導入模塊: import theano [as 別名]
# 或者: from theano import shared [as 別名]
def variable(value, dtype=None, name=None):
    '''Instantiates a variable and returns it.

    # Arguments
        value: Numpy array, initial value of the tensor.
        dtype: Tensor type.
        name: Optional name string for the tensor.

    # Returns
        A variable instance (with Keras metadata included).
    '''
    if dtype is None:
        dtype = floatx()
    if hasattr(value, 'tocoo'):
        _assert_sparse_module()
        variable = th_sparse_module.as_sparse_variable(value)
    else:
        value = np.asarray(value, dtype=dtype)
        variable = theano.shared(value=value, name=name, strict=False)
    variable._keras_shape = value.shape
    variable._uses_learning_phase = False
    return variable 
開發者ID:lingluodlut,項目名稱:Att-ChemdNER,代碼行數:24,代碼來源:theano_backend.py

示例7: Adam

# 需要導入模塊: import theano [as 別名]
# 或者: from theano import shared [as 別名]
def Adam(cost, params, lr=0.0002, b1=0.1, b2=0.001, e=1e-8):
    updates = []
    grads = T.grad(cost, params)
    i = theano.shared(np.array(0., theano.config.floatX))
    i_t = i + 1.
    fix1 = 1. - (1. - b1)**i_t
    fix2 = 1. - (1. - b2)**i_t
    lr_t = lr * (T.sqrt(fix2) / fix1)
    for p, g in zip(params, grads):
        m = theano.shared(p.get_value() * 0.)
        v = theano.shared(p.get_value() * 0.)
        m_t = (b1 * g) + ((1. - b1) * m)
        v_t = (b2 * T.sqr(g)) + ((1. - b2) * v)
        g_t = m_t / (T.sqrt(v_t) + e)
        p_t = p - (lr_t * g_t)
        updates.append((m, m_t))
        updates.append((v, v_t))
        updates.append((p, p_t))
    updates.append((i, i_t))
    return updates 
開發者ID:hexahedria,項目名稱:gated-graph-transformer-network,代碼行數:22,代碼來源:adam.py

示例8: __init__

# 需要導入模塊: import theano [as 別名]
# 或者: from theano import shared [as 別名]
def __init__(self, input_width, output_width, activation_shift=0.0, name=None):
        """
        Params:
            input_width: Width of input.
            output_width: Width of the GRU output
            activation_shift: How to shift the biases of the activation
        """
        self._input_width = input_width
        self._output_width = output_width

        prefix = "" if name is None else name + "_"

        self._reset_W = theano.shared(init_params([input_width + output_width, output_width]), prefix+"reset_W")
        self._reset_b = theano.shared(init_params([output_width], shift=1.0), prefix+"reset_b")

        self._update_W = theano.shared(init_params([input_width + output_width, output_width+1]), prefix+"update_W")
        self._update_b = theano.shared(init_params([output_width+1], shift=1.0), prefix+"update_b")

        self._activation_W = theano.shared(init_params([input_width + output_width, output_width]), prefix+"activation_W")
        self._activation_b = theano.shared(init_params([output_width], shift=activation_shift), prefix+"activation_b")

        self._strength_W = theano.shared(init_params([input_width + output_width, 1]), prefix+"strength_W")
        self._strength_b = theano.shared(init_params([1], shift=1.0), prefix+"strength_b") 
開發者ID:hexahedria,項目名稱:gated-graph-transformer-network,代碼行數:25,代碼來源:strength_weighted_gru.py

示例9: __init__

# 需要導入模塊: import theano [as 別名]
# 或者: from theano import shared [as 別名]
def __init__(self, input_width, output_width, activation_shift=0.0, name=None, dropout_keep=1, dropout_input=False, dropout_output=True):
        """
        Params:
            input_width: Width of input
            output_width: Width of the GRU output
            activation_shift: How to shift the biases of the activation
        """
        self._input_width = input_width
        self._output_width = output_width

        prefix = "" if name is None else name + "_"

        self._reset_W = theano.shared(init_params([input_width + output_width, output_width]), prefix+"reset_W")
        self._reset_b = theano.shared(init_params([output_width], shift=1.0), prefix+"reset_b")

        self._update_W = theano.shared(init_params([input_width + output_width, output_width]), prefix+"update_W")
        self._update_b = theano.shared(init_params([output_width], shift=1.0), prefix+"update_b")

        self._activation_W = theano.shared(init_params([input_width + output_width, output_width]), prefix+"activation_W")
        self._activation_b = theano.shared(init_params([output_width], shift=activation_shift), prefix+"activation_b")

        self._dropout_keep = dropout_keep
        self._dropout_input = dropout_input
        self._dropout_output = dropout_output 
開發者ID:hexahedria,項目名稱:gated-graph-transformer-network,代碼行數:26,代碼來源:base_gru.py

示例10: _init_params

# 需要導入模塊: import theano [as 別名]
# 或者: from theano import shared [as 別名]
def _init_params(self, init_W, tie_params):
        (nfilt, fc, fi, fj) = self.filter_shape

        if 'W' not in tie_params:
            if init_W is None:
                w_shape = self.filter_shape
                init_W = self.conf.geteval('init_W')(w_shape).astype(floatX)
            self.W = theano.shared(value=init_W, name='W')
            self.params.append(self.W)

        if self.have_bias and 'b' not in tie_params:
            init_b = self.conf.geteval('init_b', 0)
            nb = nfilt if not self.transpose else fc
            self.b = theano.shared(init_b + np.zeros(nb, dtype=floatX),
                                   name='b')
            self.params.append(self.b)
    #計算網絡的輸出 
開發者ID:hjimce,項目名稱:Depth-Map-Prediction,代碼行數:19,代碼來源:net.py

示例11: RMSprop

# 需要導入模塊: import theano [as 別名]
# 或者: from theano import shared [as 別名]
def RMSprop(cost, params, lr=0.001, rho=0.9, epsilon=1e-6, grads=None):
    # From:
    # https://github.com/Newmu/Theano-Tutorials/blob/master/4_modern_net.py
    if grads is None:
        grads = T.grad(cost=cost, wrt=params)
    assert len(grads) == len(params)

    updates = []
    for p, g in zip(params, grads):
        acc = theano.shared(np.zeros_like(p.get_value(), dtype=np.float32),
                            name="%s/rms/acc" % p.name)
        acc_new = rho * acc + (1 - rho) * g ** 2
        gradient_scaling = T.sqrt(acc_new + epsilon)
        g = g / gradient_scaling
        updates.append((acc, acc_new))
        updates.append((p, p - lr * g))
    return updates 
開發者ID:stanfordnlp,項目名稱:spinn,代碼行數:19,代碼來源:blocks.py

示例12: add_param

# 需要導入模塊: import theano [as 別名]
# 或者: from theano import shared [as 別名]
def add_param(self, name, shape, initializer=None, savable=True, trainable=True):
        if not initializer:
            initializer = self.default_initializer

        if name not in self.vars:
            full_name = "%s/%s" % (self.prefix, name)
            if self.logger:
                self.logger.Log(
                    "Created variable " + full_name + " shape: " + str(shape), level=self.logger.DEBUG)
            init_value = initializer(shape).astype(theano.config.floatX)
            self.vars[name] = theano.shared(init_value,
                                            name=full_name)
            if savable:
                self.savable_vars[name] = self.vars[name]
            if trainable:
                self.trainable_vars[name] = self.vars[name]

        return self.vars[name] 
開發者ID:stanfordnlp,項目名稱:spinn,代碼行數:20,代碼來源:variable_store.py

示例13: adam

# 需要導入模塊: import theano [as 別名]
# 或者: from theano import shared [as 別名]
def adam(self, param, grad, updates, sample_idx=None, epsilon=1e-6):
        v1 = np.float32(self.decay)
        v2 = np.float32(1.0 - self.decay)
        acc = theano.shared(param.get_value(borrow=False) * 0., borrow=True)
        meang = theano.shared(param.get_value(borrow=False) * 0., borrow=True)
        countt = theano.shared(param.get_value(borrow=False) * 0., borrow=True)
        if sample_idx is None:
            acc_new = v1 * acc + v2 * grad ** 2
            meang_new = v1 * meang + v2 * grad
            countt_new = countt + 1
            updates[acc] = acc_new
            updates[meang] = meang_new
            updates[countt] = countt_new
        else:
            acc_s = acc[sample_idx]
            meang_s = meang[sample_idx]
            countt_s = countt[sample_idx]
            acc_new = v1 * acc_s + v2 * grad ** 2
            meang_new = v1 * meang_s + v2 * grad
            countt_new = countt_s + 1.0
            updates[acc] = T.set_subtensor(acc_s, acc_new)
            updates[meang] = T.set_subtensor(meang_s, meang_new)
            updates[countt] = T.set_subtensor(countt_s, countt_new)
        return (meang_new / (1 - v1 ** countt_new)) / (T.sqrt(acc_new / (1 - v1 ** countt_new)) + epsilon) 
開發者ID:mquad,項目名稱:hgru4rec,代碼行數:26,代碼來源:hgru4rec.py

示例14: adadelta

# 需要導入模塊: import theano [as 別名]
# 或者: from theano import shared [as 別名]
def adadelta(self, param, grad, updates, sample_idx=None, epsilon=1e-6):
        v1 = np.float32(self.decay)
        v2 = np.float32(1.0 - self.decay)
        acc = theano.shared(param.get_value(borrow=False) * 0., borrow=True)
        upd = theano.shared(param.get_value(borrow=False) * 0., borrow=True)
        if sample_idx is None:
            acc_new = acc + grad ** 2
            updates[acc] = acc_new
            grad = T.sqrt(upd + epsilon) * grad
            upd_new = v1 * upd + v2 * grad ** 2
            updates[upd] = upd_new
        else:
            acc_s = acc[sample_idx]
            acc_new = acc_s + grad ** 2
            updates[acc] = T.set_subtensor(acc_s, acc_new)
            upd_s = upd[sample_idx]
            upd_new = v1 * upd_s + v2 * grad ** 2
            updates[upd] = T.set_subtensor(upd_s, upd_new)
            grad = T.sqrt(upd_s + epsilon) * grad
        gradient_scaling = T.cast(T.sqrt(acc_new + epsilon), theano.config.floatX)
        return grad / gradient_scaling 
開發者ID:mquad,項目名稱:hgru4rec,代碼行數:23,代碼來源:hgru4rec.py

示例15: SGD

# 需要導入模塊: import theano [as 別名]
# 或者: from theano import shared [as 別名]
def SGD(lr, params, grads, loss):
    """
    Stochastic Gradient Descent w/ momentum
    """
    momentum = cfg.TRAIN.MOMENTUM
    w_decay = cfg.TRAIN.WEIGHT_DECAY

    updates = []
    for param, grad in zip(params, grads):
        vel = theano.shared(param.val.get_value() * 0.)

        if param.is_bias or w_decay == 0:
            regularized_grad = grad
        else:
            regularized_grad = grad + w_decay * param.val

        param_additive = momentum * vel - lr * regularized_grad
        updates.append((vel, param_additive))
        updates.append((param.val, param.val + param_additive))

    return updates 
開發者ID:chrischoy,項目名稱:3D-R2N2,代碼行數:23,代碼來源:solver.py


注:本文中的theano.shared方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。